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Abstract 
Introduction: The objective is to evaluate the traditional classifiers for the identification of 
the grasp while doing different jobs, in order to obtain information that can be used in the 
diagnostic of the physical work requirements and job design. Methodology: The analysis 
considered different combinations of the data acquired from inertial and force resistive 
sensors: a) acceleration and resistive force sensors, b) acceleration, angular velocity and 
resistive force sensors c) acceleration, angular velocity, magnetic fields, and resistive force 
sensors. Different combinations of window and step sizes were selected with two overlap 
options: 50% and greater than 50%. Traditional classification models were trained: support 
vector machines, ensembles, Naive-Bayes algorithm. Results: Results demonstrate that the 
window size that presented optimal performance in the present study was 3 seconds with an 
overlap greater than 50%, the window size is greater than that suggested in the literature, 
which ranges from 0.75 to 2.25 seconds. Conclusions: The accuracy and F-score metrics for 
the different window-step combinations are presented, both metrics indicate that the models 
trained through Support Vector Machine have the best performance (90 %) with the 
combination of acceleration, angular velocity, and resistive force sensor. 
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Resumen: Introducción: El objetivo del presente es evaluar el desempeño de clasificadores 
tradicionales en la identificación del tipo de agarre, para obtener información de interés en el 
diagnóstico de los requerimientos de trabajo físico y el diseño del trabajo. Metodología: El 
análisis considera diferentes combinaciones de datos adquiridos mediante sensores inerciales 
y resistivos de fuerza: a) aceleración y sensores resistivos de fuerza, b) aceleración, velocidad 
angular y sensores resistivos de fuerza, y c) aceleración, velocidad angular, campos 
magnéticos y sensores resistivos de fuerza. Diferentes combinaciones de tamaño de ventana 
y paso fueron seleccionados con dos opciones de traslape: 50% y mayor al 50%. Se 
entrenaron modelos de clasificaciones tradicionales: máquinas de vectores de soporte, 
ensambles y algoritmo Naive-Bayes. Resultados: Los resultados demostraron que el tamaño 
de ventana para un desempeño óptimo en el presente estudio es 3 segundos, con traslape 
mayor al 50%. Este tamaño de ventana es mayor al sugerido por la literatura (0.75 segundos-
2.25 segundos). Conclusiones: Se presentan la exactitud y el valor-F para las diferentes 
combinaciones de ventana-paso, indicando que los modelos estrenados mediante Máquinas 
de Vectores de Soporte presentaron el mejor desempeño (90%) al analizar la aceleración, la 
velocidad angular y los sensores resistivos de fuerza.  
 
Palabras clave: Reconocimiento del agarre; análisis del movimiento de la mano; sensores 
portables; ventanas; inferencia del comportamiento humano; segmentación; clasificadores 
tradicionales; valor -F. 

 

1. Introduction 
 
The manual handling of objects is a common task in industrial activities that represents an 
ergonomic risk factor for the occurrence of musculoskeletal disorders. The upper extremities 
are frequently used during the performance of the daily activities of the human being, as 
well as in the work activities of the industrial sector, industrial activities are characterized by 
being highly repetitive, implying inappropriate postures, in addition to demanding the 
application of high forces, sometimes exceeding the physical capacities of the workers 
(Armstrong et al., 1982; Nur et al., 2014); this can cause various musculoskeletal disorders 
(MSDs), which can cause a decrease in work rate and generate productivity losses of about 
7% in the United States (Nur et al., 2014) and about 2% of the gross domestic product of the 
nation. European Union (Bevan, 2015). In 2001, the Bureau of Labor Statistics of the United 
States reported that more than half of the companies that reported the occurrence of MSDs 
due to work, are prone to the development of these due to the use of hand tools and the 
intense hand work of the workers. It was also documented that carpal tunnel syndrome (one 
of the most common work-related MSDs of the hand) and general hand injuries generated an 
average of 25 and 13 days of absenteeism, respectively (Barr et al., 2004), strongly impacting 
the productivity of companies. Nur et al. (2014) concluded that 49.3% of MSD symptoms 
occur in the neck, 48% in the hand-wrist region, 46.7% in the shoulder, 33.6% in the back, and 
21.7% in the lower back. According to studies in the food, transport, shipyards and textile 
industries of the European Union, published between 2000 and 2010, MSDs associated with 
the hand-wrist region have a prevalence of 42% (Govaerts et al., 2021) . The foregoing reveals 
the need to improve working conditions that generate health risks, mainly in the neck and 
hand-wrist area. 
 
The objective of this study is to evaluate the performance of some traditional classification 
algorithms for the grasp type recognition, in addition to analyzing different options for 
selecting variables and segmenting the data flow from inertial sensors with 9 degrees of 
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freedom (DOF), and resistive force sensors. The grasp type recognition, used in work 
activities is of great importance for the task design, thereby allowing the implementation of 
efficient work methods that reduce the adoption of unsuitable postures at work, which 
reduces the risk of musculoskeletal injury. 
 
1.1. Grasp Type Classifications 
 
The hand is one of the most complex motor systems in the human body (Xue et al., 2019). 
The study of the way in which humans take control of objects is important in the diagnosis of 
ergonomic risk factors in workplaces. The grasp type is defined as each static posture that 
the hand adopts to grasp a stable object during manipulation activities with one hand, 
regardless of its orientation (Barr et al., 2004; Feix et al., 2016).  
 
Since the control of the object is an activity selected consciously or unconsciously by the 
worker, the recognition of the manipulation of objects becomes complicated (Xue et al., 
2019). Feix et al. (2016) developed the GRASP Taxonomy of human grasp types, the 
proposed grasp categories including power, intermediate and precision grasp; in the power 
grasp all movements have to be evoked by the arm, while in the precision grasp the hand is 
able to perform intrinsic movement without having to move the arm; in the third category 
the intermediate grasp elements of power and precision grasp are present in the same 
proportion; with respect to the opposition types, three basic direction in which the hand can 
apply forces on the object to hold it securely, were mentioned: pad, palm and side 
opposition, in pad opposition category the object is parallel to the palm and hold between 
the fingers and the thumb (example holding a needle); palm position occurs when the object 
is hold using the finger, thumb and palm (example holding a hammer or screwdriver) and 
side position occurs when the object is transverse to the palm and is hold between the fingers 
and thumb (example holding a cigarette or a key). Concluding identifying 33 grasp types 
commonly used in the labor sector, arranged by the number of fingers in contact with the 
object and the position of the thumb. 
 
1.2. Background and related work 

 
The grasp type recognition has been implemented mainly in the area of robotics and 
automatic object manipulation. Zou et al. (2018) proposed a method for real-time grasp 
recognition using the leap motion controller (LMC) sensor, from which relative thumb 
positions, finger joint angles, and finger orientation were obtained and the used a Support 
Vector Machine (SVM) classifier to identify six types of grasps: large diameter, small 
diameter, index finger diameter, palmar pinch, prismatic and sphere. The accuracy of the 
classification model with the best performance is 75.65%. The authors concluded that the 
greatest confusion in prediction occurred in the small and large diameter grasp type, which 
they attribute to occlusion issues during motion capture. 
 
Baldominos et al. (2019) compared the performance of machine learning techniques for 
human activity recognition using inertial sensors placed on the wrist and in the pocket of the 
analyzed subjects. Activities analyzed include walking, cycling, going up and down stairs, 
common postures (such as standing and sitting), work activities (such as writing and typing), 
and leisure activities (such as talking, eating, drinking coffee, and smoking). The results 
show that the higher accuracy and F-score (94.87% and 94.68%, respectively), were attained 
from the dataset obtained from the sensor placed on the wrist using the models trained 
through decision tree ensembles.  
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Moschetti et al. (2016) found that, for the prediction of activities of daily living that involve 
movements of the upper extremity, the accuracy and F-score obtained by support vector 
machine (SVM) classification models are higher than those obtained by models trained by 
decision trees, using one, two or three inertial sensors placed on the hand. 
 
1.3. Activity Recognition Chain 

 
Bulling et al. (2014) proposed a tutorial on human activity recognition using on-body inertial 
sensors, it provides an Activity Recognition Chain (ARC) as a general-purpose framework 
for designing, implementing and evaluating Human Activity Recognition (HAR) systems; 
the framework comprises components for data acquisition and pre-processing, data 
segmentation, features extraction and selection, training and classification, decision fusion 
and performance evaluation. 

 
 1.3.1 Sensor Data Acquisition and Preprocessing 

 
In the first stage of a typical ARC, raw data is acquired using several sensors attached to 
different locations on the body (Bulling et al., 2014); preprocessing of acceleration and 
gyroscope signals may involve calibration, unit conversion, normalization, resampling, 
synchronization or signal level fusion (Figo et al., 2010). 

 
 1.3.2 Data Segmentation 

 
Segmenting a continuous sensor stream is a challenging task since the exact boundaries of an 
activity are difficult to define. In the literature, various methods exist to approach the 
problem of segmentation the simplest is sliding window, where the sequence of n input 
samples is split into windows of w consecutive samples. However, the data associated with a 
particular event could be split in different windows, resulting in important loss information. 
An alternative segmentation method, frequently used for dividing the accelerometer data 
flow, is overlapping sliding window (Bulling et al., 2014; Figo et al., 2010; Lara & Labrador, 
2013; Lima et al., 2019; Ni et al., 2016) , which includes overlap between adjacent windows, 
and the different overlapping percentages can be referred as step. The windows size, w, 
directly influences the delay of the system; the bigger window size, the longer the ARC has 
to wait for a new segment to be available for the processing, in the other hand, the larger the 
step size, the less frequently all subsequent stages of the ARC are executed which reduces the 
computational load.  
 
The Figure 1 shows the sliding window whit the fixed size of w samples and a step of s 
samples. Every time the windows slides over the data a new segment is created with the 
samples contained in the window. Each window i, covers an input vector xi from the 
sequence of data T using Equation 1 where xstart is defined by Equation 2 (Baldominos et al., 
2019). 

 

xi=T[xstart,x(start+w+1) ]                                                                                (1) 

 

xstart= s  * i                                                                                               (2) 
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Figure 1.  

Sliding window of size w and step s  

 

Source:   Adapted from  Baldominos et. al. (2019). 

Banos et al. (2014) presented an extensive study to characterize the window procedure to 
determine its impact within the activity recognition process, demonstrating that the most 
precise recognizer is obtained for very short windows (0.5 to 1 second for arms activities) 
contrary to what its often thought, large windows sizes do not necessarily translate into a 
better recognition performance. Achumba et al. (2012) determined the optimal segmentation 
approach using 12 second windows size and 90 % windows overlap to partition measured 
human ambulation and activity sensor data. 
 
Is clear that decreasing the windows size allows for a faster activity detection, but large data 
windows are preferred for complexity activities; in the other hand very, small step can lead 
an unmanageable volume of data. The choice of segmentation techniques is in general very 
important because inappropriate segmentation will most likely result in features without 
discriminant power. 

 
 1.3.3 Feature Extraction and Selection 

 
Feature engineering involves the selection and extraction of features. The first one consists of 
manually choosing the variables that will be considered in the HAR and is generally done 
based on experience and prior knowledge about the HAR. On the other hand, the extraction 
of characteristics consists of the transformation process of the data contained in each one of 
the windows defined in the segmentation stage; this process seeks to determine a set of 
features that minimizes classification errors and reduces computation time (Nweke et al., 
2018). Feature extraction is a necessary step in the analysis of signals from inertial sensors, 
since the raw data obtained by such sensors are not suitable for use in machine learning 
algorithms. 
 
Various studies have analyzed feature selection and its impact on the performance of 
machine learning classification models trained for RAH, Shoaib et al. (2014) indicate that the 
accuracy of the prediction can be increased if the information coming from two sensors 
(usually accelerometer and gyroscope) are combined, at the same time that the performance 
for different subjects is stabilized. In Lima et al. (2019) and Chen & Shen (2017) it’s also 
suggested that each sensor has different abilities to discriminate activities, so the selection of 
sensors depends on the specific task under analysis. 
 
Regarding the feature extraction process, the literature classifies them into different 
representation domains: frequency domain, time domain, and discrete domain. In each 
domain there are different mathematical models that allow extracting specific characteristics 
of the signals. In the time domain, data can be represented by statistical functions: minimum, 
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maximum, mean, standard deviation, and non-statistical functions: area and frequency 
histograms. The most commonly used characteristics in the time domain for the HAR are the 
mean and the standard deviation (Bulling et al., 2014; Figo et al., 2010; Moschetti et al., 2016; 
Shoaib et al., 2014). On the other hand, in the frequency domain it is possible to carry out an 
analysis of the signal based on the frequency spectrum of the values of a certain data 
window, which allows the identification of repetitive patterns of the signals related to the 
natural periodicity of the signals activities, Fast Fourier Transform (FFT) and Wavelet 
characteristics are commonly used in this domain. In Baldominos et al. (2019), it is 
recommended to obtain the median, lower and upper quartile, the coefficient of kurtosis and 
skewness in the HAR. The extraction of features in the time domain is more widely used 
than the extraction through the frequency domain, due to the lower computational cost that 
it represents in the analysis of signals from inertial sensors. 

 
 1.3.4 Training and Classification 

 
Machine learning is a branch of artificial intelligence that seeks to build mathematical models 
in order to make predictions, in this sense, learning is defined as the ability to learn 
according to an external stimulus and remember most of the previous experiences (Chandra 
Sen et al., 2020; Jianwei Niu et al., 2010). 
 
In the literature there are several traditional strategies that have been used in HAR, requiring 
feature engineering, which consists of selecting the most relevant dimensions or features to 
be used in training classification models, such as k-nearest neighbors (kNN), support vector 
machines (SVM), decision trees (DT) and ensembles (ENS) (LeCun et al., 2015). Traditional 
classification methods include distance, statistical, kernel and decision tree based methods, 
also ensemble learners (Saez et al., 2016). Traditional machine learning methods can be 
classified based on the characteristics of the data set used: supervised learning and 
unsupervised learning. In supervised learning, models are trained that allow members of a 
data set to be classified based on a previous label or classification, while new members 
obtain a prediction based on the learning of the model. In the case of unsupervised learning, 
the models are trained without knowing the label or the class to which they belong, allowing 
to identify the natural patterns (groups) of the data set (LeCun et al., 2015). 
 
Statistical methods: 
These techniques assume that the data follow a probability function. Probabilistic models 
perform learning by inferring the probability distribution of data. The most commonly used 
method is the Naive-Bayes (NB) algorithm, which assumes strong independence between the 
predictors. The algorithm makes the prediction according to the class that provides a higher 
conditional probability (Saez et al., 2016). 
 
Kernel-based methods: 
These methods perform pattern analysis based on a kernel function, which is the similarity 
function between data pairs. The Support Vector Machine (SVM) algorithm is commonly 
used in classification and regression problems. Some of the advantages of this method is that 
it has a high performance in high-dimensionality data sets, in addition to providing a 
solution with global optimum characteristics, allowing the generalization of the results (Xue 
et al., 2019). The SVM algorithm was designed for binary classification, however, there exist 
strategies by which they can be adopted to multiclass tasks associated with remote sensing 
studies through decomposition into binary analysis series, which are treated as binary SVM 
problems, combining one-against-one and one-against-all strategies (Anthony et al., 2007). 
The one-against-all strategy divides the data set of N classes, into N cases of two classes. In 
contrast, the one-against-one strategy builds a machine for each pair of classes resulting in 
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(N(N-1)) ⁄ 2 machines. In the test stage with the test set, each classification gives one vote to 
the winning class and the observation is tagged with the class containing the most votes (Xue 
et al., 2019). One of the main disadvantages of the one-against-one strategy is that it requires 
more computational intensity, whereas the performance of the one-against-all strategy may 
be lower on an unbalanced data set. If the classes representing the hand movements are not 
linearly separable, kernel selection is crucial for good classifier performance. 
 
Ensemble Learners: 
These models combine the predictions of several base estimators, built using a given learning 
algorithm, in order to improve the results and the robustness of a simple estimator (Saez et 
al., 2016). The idea behind of ensembles is that each classification model is specialized in a set 
of instances, and when working together they perform majority voting in order to decide 
which class should be assigned to a certain instance. 

 
 1.3.5 Decision Fusion 

 
The decision fusion stage combines several intermediate classification results into a single 
decision. Fusion can happen at features or classifiers stages, some rules used in activity 
recognition are summation, majority voting, and Bayesian fusion, some sensor fusion 
benefits for an HAR system are: increased robustness, reduced classification problem 
complexity through use of classifiers dedicated to a specific subsets, classification with 
missing features and discriminative training (Bulling et al., 2014). 
 
 1.3.6 Performance Evaluation 

 
The performance of the classification models is evaluated through metrics that objectively 
indicate the reliability of the model in the HAR process (Lima et al., 2019), such as: accuracy, 
sensitivity, specificity, precision, recall and F-score (Bulling et al., 2014; Lara & Labrador, 
2013). The mentioned metrics can be obtained through the information provided by the 
confusion matrix Mnxn for a classification problem with n classes, confusion matrix associates 
the predictions of the class to which a member of the data set belongs, and the current 
classification (label or class that was used in the training phase of the model). Table 1 shows 
the confusion matrix in a binary classification problem (n=2). 

Table 1.  

Confusion matrix for n=2.  

 Negative Prediction Positive Prediction 

True 
Negatives  

 

Number of negatives instances that 
were classified as negative, True 

Negative (TN) 
 

Number of negatives instances that 
were classified as negative, False 

Negative (FN) 
 

True 
Positives  

Number of positive instances that 
were classified as negative, false 

negative (FN) 

Number of positive instances that 
were classified as positive, True 

Positive (TP) 

 
Source: Lara & Labrador (2013). 

 
The precision indicates, often referred as a positive predictive value, is the proportion of 
correctly classified positive instances, with respect to the total number of real instances of the 
class (equation 3). Recall measures, also called true positive rate is the proportion of positive 
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instances correctly classified, with respect to the total number of instances predicted for the 
class (equation 4). The accuracy metrics (equation 5) and the F-score (equation 6) are global 
measures, the first one denotes the global performance of the classifier model for all classes, 
while the F-score relates precision and recall (Lara & Labrador, 2013). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                 (4) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                           (5) 

 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                    (6) 

 

 

2. Methodology 
 
The GRASP taxonomy, which allows classifying the grasp commonly used in the labor sector 
into 33 types (Feix, et al., 2016) is the base of this study, seventeen of the 33 types of grasps, 
including power and precision grasp, were selected with the thumb in the two positions 
considered in the taxonomy: abduction and adduction (Figure 2). In order to identify 
different movement patterns, objects with different characteristics were used for the types of 
grasps studied. 
 
Figure 2.  
 
Grasp types selected for identification 
 

 
Source: Adapted from Feix et al. (2016). 
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The experiment was carried out in laboratory conditions, in which a work station was 
simulated, the objects were positioned on a workbench placed in front of the individual with 
working heights recommended for standing work, presented in Figure 3(a),within the 
optimal working area for industrial assembly activities, orange zone, showed in Figure 3(b) 
(Anthony et al., 2007). 
 
Figure 3.  
 
Experiment workstation description (a) Working heights recommended for standing work, (b) Optimal 
working area for industrial assembly activities  
 

 
 

(a) (b) 
  

Source:  Adapted from  Anthony et al.  (2007)   
   
Participants were instructed on the correct way to perform the different types of grasps 
considered in the study. At the time of recording the data, they were labeled in order to 
identify the start and end of each type of movement. At the beginning of the recording of 
measurements of each movement, each participant was asked to position the elbow flexed at 
90 degrees, to start the movement in the neutral posture in the upper extremity.  
 
The analysis of the data obtained was carried out according to the HAR methodology 
indicated in (Bulling et al., 2014), which is described in the following sections. 
 
2.1. Sensor Data Acquisition and Preprocessing 

 
To carry out the registration of information corresponding to the manual manipulation of 
objects, a data glove made up of inertial sensors and resistive force sensors was used; five 
inertial sensors with nine degrees of freedom were placed on the proximal phalanges of each 
finger and one more on the back and in addition, five resistive force sensors were placed on 
each fingertip and one more on the palm hand. Acceleration, angular velocity and magnetic 
components are obtained by inertial sensors, showing information about the hand and 
fingers movement while contact forces are obtained by the forces resistive sensors showing 
information about the contact of the hand with the manipulated object. The Figure 4 shows 
the sensors position. The sampling frequency is 25 Hz. 

 
The data obtained through the data glove were acquired and processed using MATLAB® 
version 2019ª installed on a laptop computer with a 64-bit Windows 10 operating system 
with Intel Core i7-8550U CPU and 16 GB of RAM. The motion capture system was connected 
to the laptop computer through a USB port.  
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Figure 4.  
 
Designed data glove for the experiment (a) Force Resistive Sensors in the palm hand (b) Inertial 
Sensors in the back hand. 

 

  

(a) (b) 
Source: Developed by authors. 

  
 
The raw data were sorted chronologically in a tridimensional array for the acceleration, 
angular velocity and magnetic components. The zero motion and zero rate methods for 
accelerometer and gyroscope calibration were used; zero motion method consists of 
obtaining the average of a thousand accelerometer readings, such readings are taken when 
the sensor is at rest, zero motion, on a flat surface and with the z axis oriented in the opposite 
direction to the flat surface, while the zero rate method consists of calculating the average of 
1000 gyroscope readings while the sensor is at rest, zero rate, regardless of its orientation. On 
the other hand, the calibration of the magnetometer includes the calculation of the hard 
(hard iron) and soft (soft iron) deviations of the magnetic fields according to Lima et al. 
(2019), implemented using the magcal function in MatLab 2019ª. Subsequently, a fifth-order 
median filter was used to remove abnormalities and peaks in the acquired signals that can be 
caused by environmental conditions, movements and behavior changes of the user (Lima et 
al., 2019).  

 
2.2. Data Segmentation 

 
There is evidence in the literature that segmentation with overlapping fixed-size windows 
handles transitions more precisely than those that do not share information (Lapucci et al., 
2021) . Some HAR studies have been performed with 50% overlap, while others recommend 
a fixed window size of 2 to 5 seconds, considering a sampling frequency of 20Hz to 50Hz 
(Banos et al., 2014; Feix et al., 2014; Kubota et al., 2019; Shoaib et al., 2014). In the present 
study, different window size combinations were selected with two overlap options: 50% and 
greater than 50% as shown in Table 2.  
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Table 2.  
 
Description of sliding windows and step size combination for data segmentation. 
 

 

 

Source: Developed by authors 

 
 

The time series data were transformed to the frequency domain using the fast Fourier 
transform available in MatLab 2019ª and only the real coefficients were considered, ignoring 
the imaginary part of the transformed values as in  Baldominos et al. (2019). The following 
characteristics were extracted: mean and standard deviation of the raw data vector, as well as 
median, low and upper quartile, and coefficients of skewness and kurtosis of the 
transformed vector. 
 
2.3. Trainning and Classification 
 
Traditional classification models were trained: support vector machines (SVM), ensembles 
(ENS), Naive-Bayes (NB) algorithm, cross-validation with k=10 was used to avoid 
overtraining. 

3. Results 
 
Tables 3, 4 and 5 show the accuracy values and F-score corresponding to the models trained 
for the different window-step combinations. Both metrics indicate that the models trained 
through support vector machine, (SVM) have a better performance, followed by the models 
corresponding to ensembles (ENS), while the models trained through Naive-Bayes (NB) 
presented greater confusion in the prediction of the type of grip. 
 
Regarding the features selection, considering only the components of the acceleration and 
force sensors (table 3), or the acceleration, angular velocity and magnetics components of the 
readings coming from the inertial sensors in addition to the force sensors (table 5), presented 
similar results, but of lower magnitude than the predictions obtained by considering the 
acceleration and angular velocity from the inertial sensors plus the force resistive sensors 
(table 4). 
 
The W75S10 segmentation (window size=75 samples, step=10 samples) presented the highest 
value F-Score, for the different feature selection options. 
 
  

 
Code 

Windows size Step Size  
Overlap Samples Seconds Samples Seconds 

W50 S25 50 2 25 1 50 % 

W75 S35 75 3 35 1.4 50 % 

W100 S50 100 4 50 2 50 % 

W25S10 25 1 10 0.4 >50 % 

W50 S10 50 2 10 0.4 >50% 

W75 S10 75 3 10 0.4 >50% 

W100 S10 100 4 10 0.4 >50% 
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Table 3.  
 
Trained models accuracy and F-Score using acceleration components and force sensors 

Window-step Accuracy F-score 

ENS SVM NB ENS SVM NB 

W25 S10 0.7984 0.8564 0.3748 0.7967 0.8483 0.3990 
W50 S10 0.8503 0.8718 0.4105 0.8481 0.8649 0.4369 
W75 S10 0.7821 0.8748 0.4126 0.7805 0.8711 0.4504 
W100 S10 0.7607 0.8644 0.4763 0.7472 0.8623 0.4196 
W50 S25 0.7109 0.8355 0.3010 0.7024 0.8299 0.3164 
W70 S35 0.6385 0.8215 0.2846 0.6041 0.8187 0.3161 
W100 S50 0.5399 0.7073 0.2175 0.4929 0.7226 0.2338 

Source: Developed by authors based on data. 
 

Table 4.  
 
Trained models accuracy and F-Score using acceleration and angular velocity components plus force 
resistive sensors 

Window-step Accuracy F-score 

ENS SVM NB ENS SVM NB 

W25 S10 0.8405 0.8687 0.3911 0.8344 0.8620 0.4186 
W50 S10 0.8090 0.8964 0.4258 0.7998 0.8921 0.4558 
W75 S10 0.8570 0.9066 0.4246 0.8537 0.9047 0.4626 

W100 S10 0.8491 0.9007 0.4039 0.8387 0.8940 0.4383 
W50 S25 0.8198 0.8700 0.3118 0.8044 0.8671 0.3291 
W70 S35 0.8469 0.8669 0.2931 0.8357 0.8618 0.3244 

W100 S50 0.7836 0.7973 0.2232 0.7686 0.7985 0.2423 

 

Source: Developed by authors based on data. 
 

Table 5.  
 
Trained models accuracy and F-Score using acceleration, angular velocity and magnetic components 
plus force resistive sensors 

Window-step Accuracy F-score 

ENS SVM NB ENS SVM NB 

W25 S10 0.8463 0.8530 0.3676 0.8354 0.8484 0.3974 
W50 S10 0.8609 0.8754 0.4273 0.8557 0.8719 0.4576 
W75 S10 0.8366 0.8801 0.4200 0.8291 0.8769 0.4568 

W100 S10 0.8406 0.8792 0.4091 0.8385 0.8767 0.4432 
W50 S25 0.7983 0.8371 0.3080 0.7897 0.8331 0.3276 
W70 S35 0.8131 0.8362 0.3008 0.8081 0.8319 0.3318 

W100 S50 0.5900 0.7984 0.2323 0.5787 0.7937 0.2508 

 
Source: Developed by authors based on data. 
 

 
Figure 5 presents the confusion matrix for the best results combination: SVM classification 
model, acceleration and angular velocity components plus force resistive sensors, W75S10 
combination (window size 75 samples and step size 10 samples). This matrix shows the 
frequencies of the correct predictions (values on the diagonal of the matrix, in blue) as well as 
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the predictions that presented confusion considered incorrect (outside of the diagonal values, 
showed in brown). From the aforementioned confusion matrices, it can be concluded that the 
most confused grips correspond to type 1, 2 and 18 grips, which are predicted as type 12, 3 
and 12 grips, respectively. 
 
Figure 5.  
 
Confusion Matrix for the SMV model using the acceleration and angular velocity components plus 
force resistive sensors with the combination of window and step size W75S10. 
 

 
Source: Developed by authors based on data. 
 

4. Discussion 
 

Figure 6 shows the comparation between the real grasp type and the predicted. The 
confusion in the prediction of grasp type 1, being classified as grip type 12 may be due to the 
nature of the movement, this is because the manipulation movements of the objects were 
carried out in different positions of the hand-wrist: pronation, supination and neutral 
posture. In the case of the prediction of grasp type 2 as grasp type 3, it could be caused by the 
similarity of the movement, when using objects of similar diameter. The confusion in the 
prediction of grasp type 18, being classified as grasp type 12, can be attributed to the physical 
characteristics of the manipulated object (extreme diameter and minimum weight) and the 
size of the hands of the subjects who carried out the experimentation, forcing a power grip of 
such width that the fingers remain with minimal flexion.  
 
In relation to similar studies, it is observed that in Baldominos et al. (2019) accuracy and F-
score of 94.87% and 94.68% respectively are obtained using models trained by ensembles, 
(ENS) using features obtained by inertial sensors placed at two mobile devices, however, the 
activities identified in this study are full-body, unlike those proposed in the present study. 
On the other hand, the results obtained corroborate the results presented in Moschetti et al. 
(2016), in which it is concluded that the models trained using SVM have a higher accuracy 
and F-score than those obtained using decision trees. A better performance is observed in 
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this study, than the one presented in Zou et al. (2019) through the combination of inertial 
sensors and resistive force sensors, (75.65%), who used the Leap Motion Controller sensor 
and SVM. The window size that presented optimal performance in the present study 
(W75S10, which represents a window size = 3 seconds with 75 samples), is higher than the 
one suggested in Banos et al. (2014) whose range goes from 0.75 to 2.25 seconds.  
 
The present study has two main limitations. The first one refers to the controlled laboratory 
conditions under which the experimentation was carried out. The second is related to the 
discriminatory power of the classification models for the prediction of the grasp type, which 
is influenced by the configuration of the sensors used in the data glove used, in addition to 
the objects handled. It is suggested as future work to carry out the analysis with variations in 
the number of inertial and resistive sensors included in the data glove, as well as the 
placement of these in different points of the fingers and hands. 
 
Figure 6.  
 
Grasps type real and predicted comparation. 
 

Real Grasp Type Predicted Grasp Type 

  

 
 

 
1. Large Diameter 12. Precision Disk 

 

 

 

 
2. Small diameter 3. Medium wrap 

 
 

 
 

 

 

18. Extension type 12. Precision Disk 

 
Source: Developed by authors based on data. 
 

5. Conclusions 
 
The results indicate that data segmentation in sliding windows with overlap greater than 
50%, are more recommendable than the segmentation in sliding windows with overlap less  
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than or equal to 50%. On the other hand, the grasp types that presented the greatest 
confusion in the prediction were grips 18, 2, and 1, being classified as grips 12, 3, and 1, 
respectively. 
 
In the case of the features selection, it is possible to infer that under the conditions in which 
the sampling of activities was carried out, the grasp type recognition by traditional   
classification models presents a smaller error in the prediction when considering the features 
combination of acceleration and angular velocity components from inertial sensors, plus 
readings from force resistive sensors; this can be generalized for conditions similar to those 
considered in the present study. 
 
The limitations of this study make it possible to identify opportunities for future work, in 
which more inertial and force resistive sensors are included that allow a more precise 
discrimination between the grasps type, in addition to the analysis of the manipulation of 
objects with features not considered in this study plus to considering experimental 
environments that are more representative of real working conditions. 
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