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Abstract:  
Introduction: The structural disambiguation of English multiword terms (MWT) of three or 
more constituents (e.g., coastal sediment transport), often known as bracketing, involves the 
grouping of the dependent components so that the MWT is reduced to its basic form of 
modifier+head, as in coastal [sediment transport], which is a right-bracketed ternary compound. 
This work presents a study that explored whether the bracketing of a ternary compound, when 
used as an argument in a sentence, can be predicted from the semantic information encoded 
in that sentence. Methodology: A set of 1.694 sentences were analyzed semantically and 
annotated with the lexical domain of the verbs, the semantic role and category of the 
arguments, and the semantic relation between the arguments. These semantic variables were 
then analyzed statistically to determine whether they are able to predict the bracketing of a 
ternary compound. Results: A random forest model, with the lexical domain of the verb, and 
the semantic role and category of the MWT, was able to predict the bracketing of the ternary 
compounds used as arguments in a sample of 380 MWTs (100% F1-score). A decision tree, with 
solely the semantic relation of the MWT to another argument in the same sentence, was also 
able to predict the bracketing of the ternary compounds in the sample (94,12% F1-score). 
Discussion: Only a subset of three variables was necessary for bracketing prediction with an 
error free performance, whereas previous research employed a minimum of 12 variables. 
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Conclusion: The semantic information in a sentence contributed substantially to compound 
parsing. This suggests a novel research direction in the integration of semantic variables into 
syntactic parsers and machine-translation applications. 
 
Keywords: multiword-term bracketing; bracketing prediction; random forest model; decision-
tree model; verb lexical domain; semantic role; semantic category; semantic relation. 
 

Resumen:  
Introducción: La desambiguación estructural de unidades terminológicas poliléxicas (UTP) de 
tres o más formantes en inglés (p.e., coastal sediment transport), también denominado bracketing, 
consiste en reducir la UTP a su forma básica de modificador+núcleo. Así, se puede indicar que 
el bracketing de coastal [sediment transport] es derecho. En este trabajo se explora si el bracketing 
de una UTP ternaria, usada como argumento en una oración, puede predecirse a partir de la 
información semántica codificada en dicha oración. Metodología: Se analizan semánticamente 
1.694 oraciones, en las que se anotan el dominio léxico del verbo, la categoría y el rol 
semánticos de los argumentos verbales, y la relación semántica entre los argumentos. Estas 
variables semánticas se emplean para predecir el bracketing de una UTP ternaria. Resultados: 

El modelo predictivo random forest, con el dominio léxico del verbo, y el rol y la categoría de la 
UTP, predice el bracketing de las UTP ternarias, usadas como argumentos en una muestra de 
380 UTP ternarias (100 % F1-score). El modelo árbol de decisión, únicamente con la relación 
semántica entre la UTP y otro argumento en la misma oración, también predice el bracketing 
de las UTP ternarias de la muestra (94,12 % F1-score). Discusión: Solo tres variables son 
necesarias para predecir el bracketing sin errores, mientras que las investigaciones previas 
emplearon un mínimo de 12 variables. Conclusiones: La información semántica, codificada 
en una oración, contribuye sustancialmente a la predicción del bracketing. Esto abre una nueva 
línea de investigación, que sugiere la incorporación de variables semánticas en analizadores 
sintácticos y en sistemas de traducción automática. 
 
Palabras clave: bracketing de unidades terminológicas poliléxicas; predicción del bracketing; 
modelo random forest; modelo árbol de decisión; dominio léxico del verbo; rol semántico; 
categoría semántica; relación semántica. 

 

1. Introduction 
 
When multiword expressions are used in specialized knowledge domains, they are known as 
multiword terms (MWTs). MWTs often have more than two components. For MWTs of three 
or more constituents (e.g., the three-component MWT sea level rise), a semantic analysis, based 
on linguistic and domain knowledge, is necessary to resolve the dependency between 
components. This structural disambiguation, often known as bracketing or parsing, involves the 
grouping of the dependent components so that the MWT is reduced to its basic form of 
modifier+head, as in [sea level] rise. Knowledge of these dependencies facilitates the 
comprehension of an MWT and, consequently, its accurate translation into other languages. A 
case in point is natural sediment supply. Since we know that this is a right-branched MWT (i.e., 
it is parsed as natural [sediment supply]), its correct translation into Spanish would be suministro 
natural de sedimentos, and not suministro de sedimentos naturales. Another example is sea level rise, 
whose bracketing is left (i.e., it is parsed as [sea level] rise). This means that its correct translation 
into Spanish would be incremento del nivel del mar, and not incremento marino del nivel. 
 
MWTs can be included in Terminological Knowledge Bases (TKBs). For that, it is often 
necessary to structurally disambiguate MWTs to make their relational structure explicit and 
thus favor knowledge acquisition in communicative situations such as specialized translation 
(León-Araúz et al., 2021). For this reason, a specific module for MWT representation has been 
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designed in the TKB EcoLexicon1 (San Martín et al., 2020) to include bracketing-related 
information. This was considered useful because the resolution of MWT bracketing provides 
a higher overall accuracy in machine-translation systems (Garg et al., 2022) and sentence 
parsers (Vadas & Curran, 2008). Thus, given the importance of the structural disambiguation 
of MWTs, this study focuses on the bracketing prediction of three-component MWTs, 
henceforth also referred to as ternary compounds. As predictors for the predictive models 
(decision tree and random forest), semantic variables are used. These variables come from the 
semantic annotation of the predicate-argument structure of sentences that, at the same time, 
mention potamonyms (i.e., named rivers such as the Salinas River, in California) and include 
ternary compounds in an English specialized corpus on Coastal Engineering (7 million tokens). 
 
The two reasons why the analyzed sentences cite potamonyms are to be clarified. Firstly, as 
shall be seen, the semantic relation that a ternary compound maintains with another argument 
in the same sentence is essential to the prediction of its bracketing. However, the semantic 
relations that are activated in each subject field are different and  they remain unknown unless 
an in-depth semantic analysis is performed. Consequently, for the establishment of a closed 
set of semantic relations to use during the annotation process, a previous semantic analysis 
was carried out. This analysis limited to a sample of 1.694 sentences, extracted from the corpus 
on Coastal Engineering, which mentioned potamonyms. In doing so, we could determine 
which specific semantic relations potamonyms kept to other specialized concepts in Coastal 
Engineering, which were reported by Rojas-Garcia (2022a). Secondly, the ultimate goal of the 
semantic analysis of the 1.694 sentences was the semantic representation of named rivers in 
EcoLexicon. This is a digital, multilingual TKB on environmental sciences, designed according 
to Frame-based Terminology (Faber, 2015), the theoretical framework of this research, on 
which the semantic variables for bracketing prediction are drawn. Frame-based Terminology is 
a cognitive theory of Terminology – a discipline that deals with the theoretical and 
methodological description of the specialized language –, which contextualizes concepts in 
frames, also called semantic networks or knowledge structures, and is based on corpus analysis. 
 
1.1. Hypothesys 
 
Since the semantic information in a sentence firmly guides its syntactic parsing (Lazaridou et 
al., 2013), as hypothesis for this experiment, we assumed that the correct bracketing of a 
ternary compound, when used as an argument in a sentence, can be predicted from the 
semantic information encoded in that sentence. This assumption comes from the daily 
experience of a translator who must deal with ternary compounds in specialized texts. 
Although the compounds are somewhat familiar, it is useful to craft definitions for them to 
facilitate their translation into another language based on their context of use. 
 
1.2. Objectives 
 
This article presents the statistical analysis of the semantic variables annotated with a view to 
finding evidence that the structural disambiguation, or bracketing, of a three-component MWT 
can be predicted from the semantic information encoded in the sentence where the ternary 
compound is used as an argument. For that purpose, a set of specific objectives were established: 
 

1. To create a sample of 378 sentences from the corpus in which 380 ternary compounds 
are used as arguments. These 378 sentences are drawn from a larger sample of 1.694 
sentences in the corpus in which a potamonym is cited. The 378 sentences are the total 
number of sentences that include ternary compounds in the sample of 1.694 sentences. 

 
1 https://ecolexicon.ugr.es  

https://ecolexicon.ugr.es/
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2. To annotate the following five semantic variables in the sample of 378 sentences: 
(a) semantic category of the arguments; (b) semantic role of the arguments; (c) semantic 
relation held between the potamonym and the other argument, which is a ternary 
compound, in the same sentence; (d) lexical domain of the verb; and (e) bracketing (left 
or right) of the ternary compounds used as arguments in the sentences. 

3. To select the predictor variables, abovementioned, that best predict the bracketing of a 
ternary compound. 

4. To build two predictive models, namely, random forest and decision tree, to predict 
the bracketing of a ternary compound. 

5. To compare the performance of the two predictive models with each other. 
 
1.3. Novelty of this Substantially Extended Version of a Conference Paper 
 
It is to be mentioned that this article is a substantially extended version of the conference paper 
Rojas-Garcia (2022b), which presented that, in a sample of 190 ternary compounds, the 
semantic relation that a ternary compound maintains with another argument in the same 
sentence can predict its correct bracketing. Notwithstanding, the work in this article goes 
beyond the earlier publication and establish some novelty and new results: 
 

1. The sample is expanded from 190 to 380 ternary compounds. 
2. The contribution of the verb lexical domain, and semantic role and category of the 

arguments in a sentence to bracketing prediction is offered. 
3. Linguistic insights are provided as to how the verb lexical domains, semantic roles, 

categories, and relations are intertwined with the bracketing of ternary compounds. 
4. The study of the pairwise associations between variables with Fisher's exact tests and 

Cramer's V values is carried out. The analysis of the predictor variables that most 
contributed to bracketing prediction and thus to higher model performance is accomplished. 

5. Also described is the comparison of the performance of the predictive models. 
 
1.4. Related Work: Methods for Bracketing Prediction in the Literature 
 
Most work on compound bracketing (or parsing) exploits either unsupervised methods (e.g., 
based on bigram corpus frequency) or supervised ones (i.e., based on training data, containing 
manually bracketed compounds, which are used to train an algorithm for predicting 
compound bracketing). We refer readers to Rojas-Garcia (2022b, pp. 142-145) for a detailed 
description of previous methods on bracketing prediction. 
 
Previous research focused on semantic information provided by the components of an MWT. 
The number of variables used for prediction ranged from 12 to 517.254 features. These 
variables were mostly based on n-gram statistics, and semantic information of the MWT 
components stored in linguistic resources such as WordNet. The overall accuracy of the 
prediction models ranged from 72,60% to 95,40%. Our approach, however, was based on 
semantic information that previous research has not as yet considered. This semantic 
information was encoded in both the co-text of a ternary compound (i.e., the sentence where 
the ternary compound was used as an argument) and the ternary compound seen as a unit 
(i.e., its semantic role and category). The initial set of variables was only five, whereas previous 
research employed a minimum of 12 variables (León-Araúz et al., 2021). 
 
1.5. Organization of the Article 
 
The rest of the article is organized as follows. Section 2 explains the materials used in this study, 
and covers our semantic approach to predicting ternary compound bracketing based on two 
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supervised models (decision tree and random forest). Also described are the sample of ternary 
compounds, the pairwise associations between variables, and the predictor variable selection. 
Section 3 focuses on the training and testing phases for the predictive models, and presents the 
results, which provide linguistic insights as to how semantic relations, verb lexical domains, and 
semantic roles and categories are intertwined with the bracketing of ternary compounds. Section 4 
discusses the results and compares them to those outlined in the literature review. Finally, 
Section 5 presents the conclusions derived from this work along with plans for future research. 
 

2. Methodology 
 
2.1. Materials 
 
A set of 1.694 sentences, in which a named river (e.g., Mississippi River) was an argument of the 
predicate of the sentences, were semantically analyzed and annotated. These sentences were 
extracted from a corpus of English texts on Coastal Engineering, comprising roughly 7 million 
tokens. This subcorpus was composed of specialized texts (scientific articles, technical reports, 
and Ph.D. dissertations), which amounted to 73,17% of the corpus size; and semi-specialized 
texts (textbooks and encyclopedias on Coastal Engineering), which constituted 26,83% of the 
corpus size. The total number of texts of the subcorpus was 2.249, whose publication data ranged 
from 1996 to 2018.  
 
2.2. Semantic Variables 
 
As semantic information in a sentence, this study explored the contribution of five semantic 
variables to bracketing prediction in ternary compounds. From the 1.694 sentences 
semantically analyzed and annotated, a total number of 378 sentences contained 380 ternary 
compounds as arguments. This sample of 380 ternary compounds, along with the values of 
the five semantic variables annotated in their corresponding sentences, were employed for the 
training and testing of two supervised models to predict whether a ternary compound was 
right-branched or left-branched. 
 
2.3. Annotation of the Semantic Variables 
 
A set of 1.694 sentences from the corpus, where 294 different rivers are mentioned, were 
manually annotated by three terminologists from the LexiCon research group (University of 
Granada),2 who have wide experience in environmental knowledge representation. They 
performed the semantic annotation of the predicate-argument structure of a sentence by 
assigning, in this order, a: (1) lexical domain to the verb; (2) semantic role to the potamonym; 
(3) semantic role to the other argument, which was a ternary compound in this study; 
(4) semantic category to the ternary compound; (5) semantic relation to the link between the 
potamonym and the other argument, which was a ternary compound in this study; and 
(6) bracketing (left or right) to the ternary compounds used as arguments in the sentence. The 
values of these six variables are shown in Table 1. 
 
Table 1. 
 
Semantic variables annotated in the set of 378 sentences, and their values. 

Semantic variables annotated Values 

Lexical domain of the verbs (8 values) 
CHANGE, MOVEMENT, EXISTENCE, POSSESSION, POSITION, 
MANIPULATION, ACTION, COGNITION 

 
2 http://lexicon.ugr.es/  

http://lexicon.ugr.es/
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Semantic roles of the arguments (13 
values) 

AGENT, RESULT, PATIENT, THEME, LOCATION, RECIPIENT, INSTRUMENT, 
TIME, RATE, MANNER, DESCRIPTION, CONDITION, PURPOSE 

Semantic categories of the arguments (3 
values) 

PROCESS, ENTITY, ATTRIBUTE 

Semantic relation between the ternary 
compound and the named river (30 
values) 

type_of, part_of, made_of, delimited_by, located_at, takes_place_in, 
phase_of, affects, causes, result_of, attribute_of, has_function, studies, 
measures, effected_by, improves, worsens, creates, becomes, gives, 
gives_to, receives, receives_from, drains, has_path, transfers, 
discharges_into, places, controls, applied_to 

Bracketing of the ternary compounds in 
the sentences (2 values) 

RIGHT, LEFT 

Source: Self-made. 
 
The annotation process was carried out with the INCEpTION annotation tool (Klie et al., 2018) 
and lasted five months. The INCEpTION annotation scheme organizes annotations in layers, 
which represent the features to be annotated in a project and their labels. We set five layers for 
five annotation features: (1) the first layer for the verb lexical-domain feature; (2) the second layer 
for the semantic role; (3) the third layer for the semantic category; (4) the fourth layer for the 
semantic relation; and (5) the fifth layer for the bracketing of ternary compounds. 
 
The most frequent verbs in the corpus are general language verbs (e.g., accumulate, pollute, increase, 
discharge, supply, drain), which are also used in specialized texts and thus reflect how 
environmental entities interact. In this sense, such verbs are susceptible to classification in the eight 
lexical domains proposed by Faber and Mairal (1999), within the Functional Lexematic Model. In 
this regard, the majority of verbs in the English EcoLexicon Corpus were found to belong to the 
lexical domains shown in Table 1, which were used to annotate the verbs of our set of sentences. 
 
Specialized knowledge representation includes semantic properties that help to describe the 
nature of entities and processes. These semantic properties are reflected as the relations 
between a verb and its arguments, which are typical semantic roles. The semantic roles used 
to annotate the arguments in our set of sentences were based on those specified by Kroeger 
(2005, pp. 54-55) and Thompson et al. (2009), which are summarized in Table 1. 
 
Depending on the ontological nature of concepts, they can be classified in three basic 
categories, namely PROCESS (i.e., events extending over time and involving different 
participants), ENTITY (i.e., physical and mental objects), and ATTRIBUTE (i.e., properties of 
entities and processes). These three values were all used to annotate the semantic category of 
the arguments in our set of sentences, and collected in Table 1. 
 
Conceptual description of specialized concepts includes their relational behavior. These 
relations for environmental concepts, with additional non-hierarchical relations specific to 
named rivers (Rojas-Garcia, 2022a), were all used to annotate the semantic relation between the 
arguments in our set of sentences, as shown in Table 1. 
 
A selection of 19 sentences from the sample, which incorporated ternary compounds as 
arguments, is provided in Table 2. This selection of 19 annotated sentences represents the main 
characteristics of the sample of 380 ternary compounds. For each of those 19 sentences, Table 3 
shows the values of the following six annotated variables: 
 

1. Lexical domain of the verb (LexDom). 
2. Semantic category of the ternary compound in the first categorization level, that is, its 

ontological category (SemCat_Level_1). 
3. Semantic role of the ternary compound (SemRol_mwt). 
4. Semantic role of the named river (SemRol_river). 
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5. Semantic relation between the ternary compound and the named river (SemRel). 
6. Bracketing of the ternary compound (Bracketing), the variable to be predicted. 

 
Table 2. 
 
Representative selection of 19 sentences (from the sample of 378 sentences), which included 19 ternary 
compounds as arguments. 

Sentences from the Sample with Ternary Compounds as Arguments 

 
(1) Sea level rise is occurring in the region of the Mississippi River Delta on the order of 1 cm per year, 

eight times the worldwide rate. 
(2) After the dam construction, the sediment supply decrease in the Tenryu River resulted in a delta 

coastline recession. 
(3) After the dam construction, the sediment supply decrease in the Tenryu River resulted in a delta 

coastline recession. 
(4) The dramatical sediment load variation in the Pearl River, with the almost unchanged water discharge 

level, represents an example of such effect that human activities can have on river deltas. 
(5) The Changjiang River provides most of the fresh water input. 
(6) Natural and anthropogenic effects combine to result in the maximum erosional stress on barrier islands, 

located near the Mississippi River mouth. 
(7) Blackstone River draining into Narragansett Bay has been extensively dammed, and although not well 

quantified, models show decreasing sediment load in the Blackstone River. 
(8) The dramatical sediment load variation in the Pearl River, with the almost unchanged water discharge 

level, represents an example of such effect that human activities can have on river deltas. 
(9) Muddy silt deposition in the Clyne River discharging into the Swansea Bay would increase. 
(10) The vegetation removal effect over the entire study reach changed the Gila River from a continually 

losing river for most years before clearing to a gaining stream during some months for most years 
following clearing. 

(11) Rising sea levels change Salinas River Estuary and could thus potentially alter sediment supplies and 
process patterns. 

(12) However, in this instance, the anthropogenic effects probably dominate and include additional 
subsidence resulting from withdrawal of hydrocarbons, and the sediment supply reduction in the 
Mississippi River by the construction of upstream impoundments and jetties that direct the riverine 
sediment offshore to deepwater. 

(13) The rest of the gravel for beach nourishment (5%) comes from flood prevention operations upstream on 
the gravelly bed of the Paillon River, a small (catchment size: 236 km2), completely urbanised river 
debouching in the eastern part of Nice Bay. 

(14) The Salinas River no longer contributes substantial beach size sand to the Littoral Cell because the river 
gradient has greatly decreased with sea level rise, reducing the flow rate. 

(15) The River Murray flows across Tertiary formations to enter coastal lagoons behind the dune calcarenite 

barriers of Encounter Bay. 
(16) Not all the sediments drained by the Dee River participate to coastal sediment transport. 
(17) The field site for this study is the Zuidgors salt marsh, located in the Western Scheldt estuary in The 

Netherlands. 
(18) Natural sediment supply within this region is defined by the Ventura River that drains large 

watersheds. 
(19) The average discharge rate of beach size sand in the Salinas River is estimated at approximately 65.000 

cubic yards per year. 

Source: Self-made. 
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Table 3. 
 
Semantic annotations and variables for a set of 19 MWTs out of the 380 MWTs that comprised the 
sample. The semantic information in the rows corresponds to the respective sentences in Table 2. 

Sent. MWT LexDom 
SemCat_ 
Level_1 

SemRol_ 
mwt 

SemRol_ 
river 

SemRel 
Bracketi

ng 

  1 [sea level] rise EXISTENCE PROCESS AGENT LOCATION takes_place_in LEFT 

  2 
[sediment 
supply] 
decrease 

EXISTENCE PROCESS AGENT LOCATION takes_place_in LEFT 

  3 
[delta coastline] 
recession 

EXISTENCE PROCESS RESULT LOCATION takes_place_in LEFT 

  4 
[sediment load] 
variation 

EXISTENCE PROCESS THEME LOCATION takes_place_in LEFT 

  5 
[fresh water] 
input 

EXISTENCE PROCESS THEME AGENT causes LEFT 

  6 
maximum 
[erosional 
stress] 

EXISTENCE ENTITY RESULT PATIENT affects RIGHT 

  7 
decreasing 
[sediment load] 

EXISTENCE ATTRIBUTE DESCRIPTION LOCATION attribute_of RIGHT 

  8 
[water 
discharge] level 

EXISTENCE ATTRIBUTE THEME LOCATION attribute_of LEFT 

  9 
[muddy silt] 
deposition 

CHANGE PROCESS PATIENT LOCATION takes_place_in LEFT 

10 
[vegetation 
removal] effect 

CHANGE ENTITY AGENT PATIENT improves LEFT 

11 
rising [sea 
level] 

CHANGE ATTRIBUTE AGENT PATIENT worsens RIGHT 

12 
[sediment 
supply] 
reduction 

POSSESSION PROCESS THEME LOCATION takes_place_in LEFT 

13 
[flood 
prevention] 
operation 

POSSESSION PROCESS AGENT LOCATION takes_place_in LEFT 

14 
[beach size] 
sand 

POSSESSION ENTITY THEME AGENT gives LEFT 

15 
dune 
[calcarenite 
barrier] 

MOVEMENT ENTITY AGENT LOCATION has_path RIGHT 

16 
coastal 
[sediment 
transport] 

ACTION PROCESS DESCRIPTION AGENT affects RIGHT 

17 
Zuidgors [salt 
marsh] 

POSITION ENTITY THEME LOCATION located_at RIGHT 

18 
natural 
[sediment 
supply] 

MANIPUL. PROCESS PATIENT AGENT controls RIGHT 

19 
average 
[discharge rate] 

COGNITION ATTRIBUTE THEME LOCATION attribute_of RIGHT 

Source: Self-made. 
 
2.4. Inter-Annotation Agreement 
 
As for the inter-annotation agreement (Brezina, 2018, pp. 87-92), Cohen’s kappa coefficient (κ) 
was used. Table 4 shows the values of κ between the pairs of annotators for semantic 
categories, semantic relations, semantic roles, lexical domains, and bracketing. 
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Table 4. 
 
Inter-annotator agreement for semantic categories, semantic relations, semantic roles, lexical domains, 
and bracketing. 

Variable Annotator 1 – Annotator 2 Annotator 1 – Annotator 3 Annotator 2 – Annotator 3 

Semantic Category 
(Level 1) 

97,4%    (p-value<0,05) 96,2%    (p-value<0,05) 97,2%    (p-value<0,05) 

Semantic Relation 96,3%    (p-value<0,05) 95,7%    (p-value<0,05) 96,1%    (p-value<0,05) 

Semantic Role 94,8%    (p-value<0,05) 92,6%    (p-value<0,05) 90,8%    (p-value<0,05) 

Lexical Domain 87,9%    (p-value<0,05) 86,7%    (p-value<0,05) 84,6%    (p-value<0,05) 

Bracketing 98,8%    (p-value<0,05) 98,1%    (p-value<0,05) 98,5%    (p-value<0,05) 

Source: Original analysis by the author. 
 
For the initial annotations of semantic roles, categories, and relations, thanks to the extensive 
experience of the annotators in semantic analysis of environmental knowledge, Cohen’s kappa 
coefficient showed a very good agreement for all annotator pairs (90%<κ<98%, p-values<0,05), 
according to Krippendorff’s (2012) recommendations for text content analysis. A review of the 
differences between annotators showed no systematic pattern of disagreement. Given the 
nature of the judgement variables, the level of agreement was deemed acceptable. 
Notwithstanding, the disagreements in the original annotations were resolved based on 
discussion between the annotators to reach a consensus on the definitive annotations of 
semantic roles, categories, and relations. 
 
For the initial annotation of verbs with lexical domains, the inter-annotation agreement was 
lower for all the annotator pairs (84%<κ<88%, p-values<0,05), indicating that this variable lent 
itself to alternative, though plausible, interpretations. A review of the differences between 
annotators showed that the lexical domains of movement and possession were more prone to 
confusion. The issues fundamentally arose from verbs that could potentially belong to more 
than one lexical domain (e.g., drain and discharge could belong to the movement and possession 
domains), as Faber and Mairal (1999) already proved. To arrive at a consensus on the definitive 
annotations of lexical domains, the factorization of meaning from the Functional Lexematic 
Model framework was applied to confusion-prone verbs. 
 
Finally, for the initial annotations of ternary compound bracketing, the inter-annotation 
agreement coefficient showed a very good agreement for all the annotator pairs (κ>98%, 
p-values<0,05) thanks to the considerable experience of the annotators in semantic analysis of 
environmental knowledge. A review of the differences between the annotators showed 
disagreement on the bracketing of certain MWTs, such as dune calcarenite barrier (row 15 in 
Table 3), because of their semantic indeterminacy. A ternary compound is semantically 
indeterminate when the meanings associated with the two bracketing structures cannot be 
distinguished in the context (Hindle & Rooth, 1993, p. 113), or when the meanings 
corresponding to each bracketing structure are the same (Lauer, 1995, p. 21). The 
disagreements in the original annotations were resolved by discussion between the annotators. 
For instance, in the case of dune calcarenite barrier, the decision was thus to regard the MWT as 
right-branched since the values of its semantic variables (LexDom=MOVEMENT, 
SemCat_Level_1=ENTITY, SemRol_mwt=AGENT) were the same as the values of other MWTs 
annotated as right-branched. Hence, given the nature of the judgement variable (Bracketing), the 
level of agreement in the initial annotations was deemed almost perfect. 
 
2.5. Description of the Sample of Ternary Compounds 
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The distribution of bracketing structures within the MWT sample was reasonably balanced 
between left-branching (220 MWTs, 58% of the sample), and right-branching (160 MWTs, 42% 
of the sample). Table 5 summarizes the counts for the sample data, disaggregated by lexical 
domain, semantic category of the MWTs, and their bracketing structure, and describes the 
distribution of the 380 MWTs across these variables. 
 
Table 5. 
 
Description of the sample of ternary compounds. 

Lexical 
Domain 

LEFT-branched MWTs RIGHT-branched MWTs 
Total 

Process Entity Attrib. Total Process Entity Attrib. Total 

MOVEMENT     0     0     0     0     0   20     0   20 
  20 
(5,3%) 

POSSESSION   40   20     0   60     0     0     0     0 
  60 
(15,8%) 

CHANGE   20   20     0   40     0     0   20   20 
  60 
(15,8%) 

EXISTENCE 100     0   20 120     0   20   20   40 
160 
(42,0%) 

ACTION     0     0     0     0   20     0     0   20 
  20 
(5,3%) 

POSITION     0     0     0     0     0   20     0   20 
  20 
(5,3%) 

MANIPUL.     0     0     0     0   20     0     0   20 
  20 
(5,3%) 

COGNITION     0     0     0     0     0     0   20   20 
  20 
(5,3%) 

Total 
160 
(42%) 

  40 
(10,5%) 

  20 
(5,4%) 

220 
(58%) 

  40 
(10,5%) 

  60 
(15,8%) 

  60 
(15,8%) 

160 
(42%) 

380 
(100%) 

Source: Original analysis by the author. 
 
Some conclusions could be drawn from the characteristics of the sample: 
 

1. Most ternary compounds designating processes were left-branched. 
2. Ternary compounds designating entities remained fairly well distributed among the 

two bracketing structures. 
3. Most ternary compounds designating attributes were right-branched. 
4. Sentences whose predicate belonged to the lexical domains of MOVEMENT, ACTION, 

POSITION, MANIPULATION, AND COGNITION included ternary compounds which were 
only right-branched. 

5. Sentences whose predicate belonged to the lexical domain of POSSESSION incorporated 
ternary compounds which were only left-branched. 

 
2.6. Pairwise Association between Variables 
 
The pairwise associations between the categorical variables were statistically analyzed with 
Fisher's exact test, which is more appropriate for small-sized samples, such as ours. Two 
categorical variables are associated if Fisher's exact test finds evidence in the sample to establish 
that both variables are statistically related to each other (i.e., two variables are statistically related 
if the p-value of Fisher's exact test is less than or equal to 0,05). Then, if two variables were found 
to be associated, we measured the strength of their association by means of Cramer's V. This 
measure ranges from 0 to 1. The higher the Cramer's V value, the stronger the association between 
two variables. For the sake of simplicity, Cramer's V values are usually interpreted as follows: 
V∈[0,1, 0,3] means weak association; V∈[0,4, 0,5] indicates medium association; and V>0,5 



11 
 

reflects strong association. 
 
Figure 1 shows a pairwise association plot between the categorical variables determined by 
Fisher's exact tests, where the color-coded squares represents p-values (the lower the p-values, 
the redder the squares), and the figures in the middle of the squares are the values of Cramer's V. 
 
Figure 1. 
 
Association plot for the categorical variables of the sample. 

 
Source: Original analysis by the author. 

 
The analysis of the pairwise associations indicated that all variables were statistically 
associated, except for Bracketing and SemRol_river (p-value=0,051>0,05), whose association 
strength was thus the lowest (V=0,2088). This signified that the semantic role of the argument 
slot filled with a named river in our case would not be sufficient to predict the bracketing of 
the ternary compound that filled the other argument in the same sentence. Nevertheless, the 
Bracketing variable was statistically associated with the other four variables. More specifically, 
Bracketing was strongly associated with both SemRel (V=0,8766) and LexDom (V=0,6802), 
moderately associated with SemCat_Level_1 (V=0,4632), and weakly associated with 
SemRol_mwt (V=0,3831). As a result, both the semantic relation of the MWT to the named river, 
the lexical domain of the verb, the ontological category of the MWT, and its semantic role 
would potentially predict bracketing in our sample of ternary compounds. 
 
Another result that should be highlighted is the particularly strong association which the 
SemRel variable maintained with all the other predictor variables, such as SemCat_Level_1 
(V=0,9205), SemRol_river (V=0,8803), LexDom (V=0,7898), and SemRol_mwt (V=0,5918). In our 
opinion, this finding suggests that the semantic relation between two arguments in a sentence 
condenses information about the lexical domain of the verb, the semantic categories of both 
arguments, and their semantic roles. In other words, SemRel is a dependent variable that may 
be predicted from LexDom, SemRol_mwt, SemCat_Level_1, and SemRol_river. However, this fact 
is not studied in this work, and is thus deferred for further investigation in the future. 
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2.7. Supervised Models 
 
For classification using supervised models, binary decision tree and random forest techniques 
were tested to predict ternary compound bracketing. Because our dataset consisted entirely of 
categorical variables, we chose these tree-based models as they handle qualitative data effectively. 
 
A decision-tree model is straightforward and easy to understand because it visually summarizes 
prediction rules in a tree format, with the terminal nodes or leaves, which represent the 
predictions, located at the bottom. However, it often does not perform as well as other predictive 
models. Therefore, we also tried using a random forest model. This model creates many decision 
trees and combines their predictions to form a single consensus. Specifically, each tree in the 
forest votes on the bracketing of an MWT, and the final classification is based on the majority 
vote. While random forest models significantly improve prediction accuracy, they are less 
interpretable, making it harder to understand how the predictions are made. 
 
2.8. Data Splitting 
 
To build and evaluate the models, the dataset containing 380 MWTs was split into two parts: 
(1) the training dataset, which consisted of 266 MWTs (70% of the original dataset) and was 
used to develop the models; and (2) the test dataset, which included 114 MWTs (30% of the 
original dataset) and was used to assess model performance. To ensure that both the training 
and test datasets had the same distribution of the outcome variable (i.e., Bracketing) as the 
original dataset (with 58% left-branched MWTs and 42% right-branched MWTs), stratified 
random sampling was employed. This method randomly selected observations within the 
LEFT and RIGHT classes of the Bracketing variable from the original dataset. 
 
2.9. Model Performance Measures 
 
The effectiveness of the two models was evaluated by examining their performance on the test 
dataset, which was kept separate from the model-development process to ensure an unbiased 
assessment. The models' predictions were compared with the actual classes in the test dataset 
(i.e., the true bracketing structures LEFT and RIGHT, as specified in the Bracketing variable). 
Performance metrics were then calculated based on this comparison. 
 
A common way to measure performance is overall accuracy, which indicates the percentage 
of correctly classified instances. However, this metric can be misleading in imbalanced 
datasets, where the outcome variable has a significant disproportion in the number of 
instances for each class. Although our dataset was only slightly imbalanced in terms of 
bracketing, we opted to use additional measures that are not affected by class proportion 
disparities to evaluate classification performance. These measures included the area under the 
ROC curve (AUC) and the F1-score (Fernández et al., 2018, pp. 52-55). Both AUC and F1-score 
range from 0 to 1, with higher values indicating better model performance in distinguishing 
between the two classes. 
 
2.10. Predictor Variable Selection 
 
Before the construction of the models, the predictor variables that most contributed to 
inter-class discrimination and thus to higher model performance were selected. This 
pre-processing task is essential because a predictive model with fewer variables may be more 
interpretable, and non-informative variables may negatively affect the model performance. 
 
The recursive feature elimination with random forest (RFE-RF) method, implemented in the caret 
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package (Kuhn, 2021) for the R programing language (R Core Team, 2022), was applied to search 
for the best subset of predictors. According to Kuhn and Johnson (2016, p. 494-495), in RFE-RF, an 
initial model contains all predictors, which are then iteratively removed to determine which are 
not significantly contributing to performance. The elimination of the predictors is based on the 
variable importance criterion that provides the random forest model. This criterion ranks the 
predictors from the most important to least. Hence, at each stage of the search, the least important 
variables are iteratively disregarded before building the next model in the following stage. 
 
On the one hand, we selected the best predictors from a set of four variables, namely, LexDom, 
SemCat_Level_1, SemRol_mwt, and SemRol_river. To preclude correlations between the 
predictors, SemRel was initially not included because it was a dependent variable that might 
be predicted from the other four variables, as previously seen in the analysis of pairwise 
associations between variables (Section 2.6). The presence of correlated predictors – situation 
called collinearity – poses problems for predictive models in determining how each one 
separately is associated with the outcome. Notwithstanding, the contribution of the SemRel 
variable to bracketing prediction will be examined later in this Section. 
 
In the training dataset (with 266 instances, 70% of the original dataset), 7-fold cross-validation 
was used to evaluate the RFE-RF variable selection method. Although 10 folds are 
conventionally employed, we chose 7 folds, a divisor of 266, so that the number of instances 
in all folds would be the same (i.e., 38 instances). During the process, the AUC performance 
measure was chosen to be maximized. In other words, the RFE-RF selected the subset of 
predictors that reached the greatest AUC in the model performance. Two parameters were also 
set: (1) the splits in the trees were allowed to use one predictor of a subset of two predictors; and 
(2) the number of trees used in the forest was set to the default value of 500 trees. 
 
The 7-fold cross-validation randomly divided the training dataset into 7 groups of equal size 
(38 instances). The first group was treated as a test dataset, and the model was fit to the other 
6 groups. The AUC was then calculated on the instances in the held-out group. This procedure 
was repeated 7 times, but each time, a different group was treated as a test dataset. The process 
resulted in 7 estimates of the AUC, and the final AUC was calculated by averaging these values. 
 
The RFE-RF method selected the predictors LexDom, SemRol_mwt, and SemCat_Level_1, and 
disregarded SemRol_river. This meant that the semantic role of the other argument, filled with 
a named river in our case, apparently exerted no influence on the prediction of ternary 
compound bracketing. As shown in Figure 2, the most important predictor was the lexical 
domain of the verb (LexDom), which would yield an AUC of 0,8397 if this were the only 
variable used for predictions. The second most important predictor was the semantic role of 
the MWT (SemRol_mwt). Hence, if both LexDom and SemRol_mwt were employed, the model 
would obtain a higher AUC, equal to 0,9744. Finally, the third most important predictor was the 
ontological category of the MWT (SemCat_Level_1). If LexDom, SemRol_mwt, and SemCat_Level_1 
were considered, the random forest model would not commit any prediction errors. 
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Figure 2. 
 
Results of the variable selection method, RFE-RF, for bracketing prediction. The predictors LexDom, 
SemRol_mwt, and SemCat_Level_1 were selected. 

 
Source: Original analysis by the author. 

 
On the other hand, we then selected the best predictors from a set of five variables, namely, 
LexDom, SemCat_Level_1, SemRol_mwt, SemRol_river, and SemRel. On this occasion, we decided 
to include the SemRel predictor to examine its contribution to bracketing prediction. Although 
SemRel was a correlated predictor, the RFE-RF method has been found to mitigate this problem 
in small datasets as ours (Gregorutti et al., 2017). 
 
As such, the RFE-RF method selected the predictors SemRel, LexDom, and SemRol_mwt, and 
disregarded SemCat_Level_1 and SemRol_river. This implied that, when the SemRel predictor 
received consideration, neither the ontological category of the MWT, nor the semantic role of 
the other argument, filled with a named river in our case, was significant for the prediction of 
ternary compound bracketing. Figure 3 illustrates that the most important predictor was the 
semantic relation between the MWT and the named river (SemRel), which would yield an AUC 
of 0,9756 if this were the only variable used for predictions. In our opinion, the enormous 
predictive power of the semantic relation was due to the fact that this predictor retains, to 
some extent, valuable information concerning the lexical domain of the verb and the semantic 
role of the MWT, as revealed in the previous analysis of pairwise association between 
variables. In other words, given that SemRel was correlated with LexDom and SemRol_mwt, it 
may be possible to predict SemRel from LexDom and SemRol_mwt. The second most important 
predictor was the lexical domain of the verb (LexDom). As a result, if both SemRel and LexDom 
were employed, the model would achieve a higher AUC, equal to 0,9957. Finally, the third 
most important predictor was the semantic role of the MWT (SemRol_mwt). If SemRel, LexDom, 
and SemRol_mwt were considered, the random forest model would preclude prediction errors. 
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Figure 3. 
 
Results of the variable selection method, RFE-RF, for bracketing prediction when the SemRel predictor 
was also included. 

 
Source: Original analysis by the author. 

 

3. Results 
 
3.1. Construction of the Models with the Predictors LexDom, SemRol_mwt, and SemCat_Level_1 
 
The variable selection task established that the best predictors of the Bracketing variable could 
be grouped into two subsets. The first subset of the best predictors was composed of LexDom, 
SemRol_mwt, and SemCat_Level_1, which were used to construct two predictive models. For 
the random forest, 7-fold cross-validation in the training dataset (with 266 instances, 70% of 
the original dataset) was used to evaluate its performance in training. Although 10 folds are 
conventionally employed, we chose 7 folds, a divisor of 266, so that the number of instances 
in all folds would be the same (i.e., 38 instances). During the process of tuning parameters, the 
AUC performance measure was chosen to be maximized. Accordingly, the random forest 
model reached in training an AUC value equal to 1,0 when: (1) the splits in the trees were 
allowed to use one predictor of a subset of one predictor; and (2) the number of trees in the 
forest was, surprisingly, only three trees. In the test dataset (with 114 instances, 30% of the 
original dataset), the random forest also achieved an AUC value equal to 1,0. 
 
Similarly, for the decision tree, 7-fold cross-validation in the training dataset was employed to 
evaluate its performance in training. During the process of tuning parameters, the AUC 
performance measure was also chosen to be maximized. Therefore, the decision-tree model 
yielded in training the greatest AUC, equal to 0,9781, when: (1) the cost-complexity parameter 
(cp), which controls a trade-off between tree complexity (i.e., number of terminal nodes) and 
its fit to the training data to avoid overfitting, was equal to cp=0,0625 (the higher the cp, the 
simpler the model); and (2) the splitting criterion for predictors was the information gain, and 
not the Gini index. In the test dataset, the decision-tree model achieved an outstanding AUC 
value equal to 0,9830. Table 6 provides further performance measures, in the training and test 
datasets, for the random forest and decision-tree models. 
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Table 6. 
 
Performance measures of the models for bracketing prediction with the predictors lexical domain, 
semantic role, and semantic category. 

Predictors: LexDom, SemRol_mwt, and SemCat_Level_1 

 Decision Tree Model 

Dataset AUC Sensitivity Specificity Precision Recall F1 
Overall 

Accuracy 

Training 0,9781 0,9464 0,9286 0,9165 0,9464 0,9249 0,9361 
Test 0,9830 1,0000 0,9091 0,8889 1,0000 0,9412 0,9474 

 Random Forest Model (3 ensembled decision trees) 

Training 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 
Test 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

Source: Original analysis by the author. 
 
Since the decision-tree model reached an extraordinarily high AUC in the test dataset 
(AUC=0,9830), its prediction rules, graphically summarized in Figure 4, deserved attention. 
 
Figure 4. 
 
Classification tree for bracketing prediction, inferred by the decision-tree model, trained with the 
predictors lexical domain, and semantic role and category of the MWTs. 

 
Source: Original analysis by the author. 

 
In our constrained context (i.e., specialized ternary compounds from Coastal Engineering, 
used in sentences where a named river was mentioned), the classification tree of the model 
(see Figure 4) can be interpreted as follows. LexDom was the most important factor in 
determining Bracketing. The ternary compounds used in sentences where the verb belonged to 
either ACTION, COGNITION, MANIPULATION, MOVEMENT, or POSITION embraced 26% of the 
sample; these MWTs were all right-branched and correctly classified. Thus, given those five 
lexical domains, the semantic category and role of the MWTs did not seem to influence the 
bracketing-structure prediction. 
 
Nevertheless, the predictions became more complicated when MWTs were employed with 
verbs belonging to the domains of CHANGE, EXISTENCE, or POSSESSION. The MWTs that 
appeared with verbs from those lexical domains, and which were also processes, constituted 
42% of the sample; these MWTs were all left-branched and correctly classified. However, when 
the MWTs were attributes or entities in combination with the previously mentioned lexical 
domains, their semantic roles were necessary to disambiguate bracketing structures. As such, 
the MWTs with the role of THEME, in this setting, comprised 11% of the sample; these MWTs 
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were all left-branched and correctly classified. In contrast, the MWTs with the role of either 
AGENT, DESCRIPTION, or RESULT constituted 21% of the sample and could be right- or 
left-branched. In these conditions, the model correctly classified all the right-branched MWTs 
(75%), but misclassified the true left-branched MWTs (25%) as right-branched. 
 
An analysis of the errors of the decision-tree model revealed that, both in the training and test 
datasets, those left-branched MWTs with the values LexDom= CHANGE, SemCat_Level_1= 
ENTITY, and SemRol_mwt= AGENT (e.g., vegetation removal effect, in row 10 of Table 3), were all 
misclassified as right-branched. 
 
3.2. Construction of the Models with the Predictors SemRel, LexDom, and SemRol_mwt 
 
The variable selection task established that the best predictors of the Bracketing variable could 
be grouped into two subsets. The second subset of the best predictors was composed of SemRel, 
LexDom, and SemRol_mwt, which were used to construct two predictive models. For the 
random forest, 7-fold cross-validation in the training dataset was used to evaluate its 
performance in training. During the process of tuning parameters, the AUC performance 
measure was chosen to be maximized. Accordingly, the random forest model attained in 
training an AUC value equal to 1,0 when: (1) the splits in the trees were allowed to use one 
predictor of a subset of one predictor; and (2) the number of trees in the forest was, 
surprisingly, only three trees. In the test dataset, the random forest also achieved an AUC value 
equal to 1,0. Consequently, both the first subset of the best predictors (LexDom, SemRol_mwt, 
and SemCat_Level_1) and the second one (SemRel, LexDom, and SemRel_mwt) were capable of 
correctly predicting bracketing in the test dataset with a random forest model. 
 
Similarly, for the decision tree, 7-fold cross-validation in the training dataset was employed to 
evaluate its performance in training. During the process of tuning parameters, the AUC 
performance measure was also chosen to be maximized. Therefore, the decision-tree model 
yielded in training the greatest AUC, equal to 0,9643, when: (1) the cost-complexity parameter 
(cp) was equal to cp=0,05357143; and (2) the splitting criterion for predictors was the 
information gain, and not the Gini index. In the test dataset, the decision-tree model achieved 
an AUC value equal to 0,9545, which indicated a very satisfactory performance, though not as 
good as that of the decision tree with the first subset of predictors (AUC=0,9830). Table 7 
provides further performance measures, in the training and test datasets, for the random forest 
and decision-tree models. 
 
Table 7. 
 
Performance measures of the models for bracketing prediction with the predictors semantic relation, 
lexical domain, and semantic role. 

Predictors: SemRel, LexDom, and SemRol_mwt 

 Decision Tree Model 

Dataset AUC Sensitivity Specificity Precision Recall F1 
Overall 

Accuracy 

Training 0,9643 1,0000 0,9286 0,9206 1,0000 0,9562 0,9586 
Test 0,9545 1,0000 0,9091 0,8889 1,0000 0,9412 0,9474 

 Random Forest Model (3 ensembled decision trees) 

Training 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 
Test 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

Source: Original analysis by the author. 
 
Since the decision-tree model reached a significant AUC in the test dataset (AUC=0,9545), its 
only prediction rule, graphically summarized in Figure 5, is worth mentioning. 
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Figure 5. 
 
Classification tree for bracketing prediction, inferred by the decision-tree model, trained with the 
predictors semantic relation, lexical domain, and semantic role of the MWTs. 

 
Source: Original analysis by the author. 

 
SemRel emerged as the most crucial factor in determining Bracketing, and it was the sole 
predictor chosen by the decision-tree model. We believe that the predictive strength of the 
semantic relation between an MWT and another argument within the same sentence is so 
significant that the model had to exclude the predictors LexDom and SemRol_mwt to prevent 
overfitting the training data. Consequently, ternary compounds whose semantic relation to 
the other argument (in our case, a named river) fell into the set of causes, gives, improves, and 
takes_place_in made up 53% of the sample. These MWTs were consistently left-branched and 
accurately classified. Thus, it appears that these four semantic relations necessitated the 
exclusive use of left-branched MWTs. 
 
Conversely, ternary compounds with a semantic relation to the other argument falling into the 
group of affects, attribute_of, controls, has_path, located_at, and worsens accounted for 47% of the 
sample. These could be either right- or left-branched. Under these conditions, the model 
accurately classified all the right-branched MWTs (89%), but incorrectly classified the true left-
branched MWTs (11%) as right-branched. 
 
An analysis of the errors made by the decision-tree model revealed that, both in the training 
and test datasets, those left-branched MWTs with the values SemRel= attribute_of, LexDom= 
EXISTENCE, SemRol_mwt= THEME, and SemCat_Level_1= ATTRIBUTE (e.g., water discharge level, in 
row 8 of Table 3), were all misclassified as right-branched. 
 

4. Discussion 
 
For predicting bracketing, past research has focused on the semantic information derived from 
the components of an MWT. The number of variables used for prediction varied significantly, 
ranging from 12 to 517.254 features. These variables were primarily based on n-gram statistics, 
which are thought to capture some semantic information through the frequent co-occurrence 
of MWT components (Lazaridou et al., 2013, p. 1909). Other studies utilized semantic 
information from linguistic resources like WordNet. The overall accuracy of these prediction 
models varied between 72,60% and 95,40%. 
 
Our semantic approach, however, utilized types of semantic information that had not been 
considered in previous research. This information was derived from both the context in which 
a ternary compound appeared (i.e., the sentence where the ternary compound was used) and 
the ternary compound itself as a unit (i.e., its semantic role and category). Initially, we 



19 
 

considered only five variables: (1) semantic relation, (2) lexical domain, (3) semantic role of the 
MWT, (4) semantic category of the MWT, and (5) semantic role of the named river. However, 
it turned out that only a subset of three variables was necessary for accurate bracketing 
prediction, whereas earlier studies used at least 12 variables (León-Araúz et al., 2021). This 
three-variable subset achieved perfect accuracy on the test dataset using a random forest 
model, outperforming previous research, which had achieved a maximum overall accuracy of 
95,40% using a support-vector machine (Pitler et al., 2010), a less interpretable model. 
 

5. Conclusion 
 
This study provided support for our hypothesis that semantic information within a sentence 
— specifically, the lexical domain of the verb, the semantic role and category of the ternary 
compound, and its semantic relation to another argument in the same sentence — significantly 
aids in parsing compounds. Considering the positive impact of multiword-term bracketing on 
the overall accuracy of sentence parsers (Vadas & Curran, 2008) and machine-translation 
systems (Garg et al., 2022), this finding suggests a promising new direction for incorporating 
such semantic variables into syntactic parsers and machine-translation applications, aligning 
with the work of Agirre et al. (2008) and Girju et al. (2005). 
 
The pairwise associations between the semantic variables annotated were statistically 
analyzed with Fisher's exact test. The analysis indicated that all variables were statistically 
associated, except for bracketing and semantic role of the river. This signified that the semantic 
role of other arguments in the same sentence was not necessary for the bracketing prediction 
of ternary compounds. Nevertheless, the bracketing variable was statistically associated with 
the other four variables (i.e., lexical domain, MWT role, MWT category, and semantic relation), 
which could predict bracketing in our sample of ternary compounds. 
 
The semantic relation variable maintained a strong association with all the other predictor 
variables (i.e., lexical domain, MWT role, MWT category, and river role). This finding suggests 
that the semantic relation between two arguments in a sentence condenses information about 
the lexical domain of the verb, the semantic categories of both arguments, and their semantic 
roles. In other words, semantic relation is a dependent variable that may be predicted from 
lexical domain, MWT role, MWT category, and river role. 
 
This study demonstrated that semantic information within a sentence significantly aids in 
compound bracketing. However, it remains uncertain whether the semantic variables 
examined here can also predict the bracketing of MWTs with four or more constituents, a topic 
for future research. Despite the promising results, they should be viewed with caution due to 
the small sample size (380 ternary compounds) and the limited scope of the analysis, which 
focused on specialized ternary compounds from Coastal Engineering used in sentences 
mentioning named rivers. Future research should adopt a broader framework to gain a deeper 
understanding of how these semantic variables influence multiword-term bracketing. 
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