Evaluación de la resistencia a la compresión y flexión del concreto modificado con fragmentos de residuos neumáticos
DOI:
https://doi.org/10.31637/epsir-2025-1267Palabras clave:
neumático, mezcla de concreto, resistencia a la compresión, resistencia a la flexión, agregados del concreto, propiedades mecánicas, manejo de residuos, reciclajeResumen
Introducción: La exploración de alternativas para crear agregados y reutilizarlos como subproductos industriales es el foco de muchas investigaciones en ingeniería. Se evaluó el efecto de la sustitución parcial de arena y grava por partículas de neumáticos sobre las propiedades mecánicas de resistencia a la compresión y flexión del concreto. Metodología: Las mezclas se prepararon reemplazando en proporciones volumétricas de 0%, 25%, 50% y 75% con partículas de neumáticos, el agregado fino (arena) y agregado grueso (grava); también incluyó mezclas preparadas en combinación 25%:25% y 50%:50% de agregados finos y gruesos con partículas de neumáticos. Resultados: La resistencia a la compresión y flexión muestran una reducción al sustituir los áridos por partículas de neumático. La sustitución del agregado fino en la menor proporción (25%) ofrece una alternativa factible y sustentable para usos no estructurales, ya que presenta una menor variación en las propiedades evaluadas. Discusión: La incorporación de neumáticos disminuye las propiedades mecánicas debido a la baja adherencia interna entre las partículas de neumático y la matriz de cemento. Conclusiones: El neumático particulado en la fabricación del concreto constituye una estrategia eficaz para reducir el consumo de grandes cantidades de áridos naturales y mitigar su impacto su ambiental.
Descargas
Citas
Ahmad, Z. (3 de julio 2017). Why modern mortar crumbles, but Roman concrete lasts millennia. https://doi.org/10.1126/ciencia.aan7051 DOI: https://doi.org/10.1126/science.aan7051
Aiello, M. A. y Leuzzi, F. (2010). Waste tyre rubberized concrete: Properties at fresh and hardened state. Waste Management, 30(8-9), 1696-1704. https://doi.org/10.1016/j.wasman.2010.02.005 DOI: https://doi.org/10.1016/j.wasman.2010.02.005
Al-Fakih, A., Mohammed, B. S., Wahab, M. M. A., Liew, M. S. y Mugahed Amran, Y. H. (2020). Flexural behavior of rubberized concrete interlocking masonry walls under out-of-plane load. Construction and Building Materials, 263, 120661 (1-10). https://doi.org/10.1016/j.conbuildmat.2020.120661 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120661
Al-Tayeb, M. M., Abu Bakar, B. H., Akil, H. M. y Ismail, H. (2012). Effect of Partial Replacements of Sand and Cement by Waste Rubber on the Fracture Characteristics of Concrete. Polymer - Plastics Technology and Engineering, 51(6), 583-589. https://doi.org/10.1080/03602559.2012.659307 DOI: https://doi.org/10.1080/03602559.2012.659307
Al-Tayeb, M. M., Abu Bakar, B. H., Ismail, H. y Akil, H. M. (2013). Effect of partial replacement of sand by recycled fine crumb rubber on the performance of hybrid rubberized-normal concrete under impact load: Experiment and simulation. Journal of Cleaner Production, 59, 284-289. https://doi.org/10.1016/j.jclepro.2013.04.026 DOI: https://doi.org/10.1016/j.jclepro.2013.04.026
Alsaif, A., Koutas, L., Bernal, S. A., Guadagnini, M. y Pilakoutas, K. (2018). Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements. Construction and Building Materials, 172, 533-543. https://doi.org/10.1016/j.conbuildmat.2018.04.010 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.010
Aslani, F. y Kelin, J. (2018). Assessment and development of high-performance fibre-reinforced lightweight self-compacting concrete including recycled crumb rubber aggregates exposed to elevated temperatures. Journal of Cleaner Production, 200, 1009-1025. https://doi.org/10.1016/j.jclepro.2018.07.323 DOI: https://doi.org/10.1016/j.jclepro.2018.07.323
Aslani, F., Ma, G., Yim Wan, D. L. y Tran Le, V. X. (2018). Experimental investigation into rubber granules and their effects on the fresh and hardened properties of self-compacting concrete. Journal of Cleaner Production, 172, 1835-1847. https://doi.org/10.1016/j.jclepro.2017.12.003 DOI: https://doi.org/10.1016/j.jclepro.2017.12.003
Assaggaf, R. A., Maslehuddin, M., Al-Dulaijan, S. U., Al-Osta, M. A., Ali, M. R. y Shameem, M. (2022). Cost-effective treatment of crumb rubber to improve the properties of crumb-rubber concrete. Case Studies in Construction Materials, 16, e00881. https://doi.org/10.1016/j.cscm.2022.e00881 DOI: https://doi.org/10.1016/j.cscm.2022.e00881
Bae, S.-H., Lee, J.-I. y Choi, S.-J. (2021). Characteristics of Mortars with Blast Furnace Slag Powder and Mixed Fine Aggregates Containing Ferronickel-Slag Aggregate. Materials, 14(19), 5879-5888. https://doi.org/10.3390/ma14195879 DOI: https://doi.org/10.3390/ma14195879
Barreto Santos, M., De Brito, J. y Santos Silva, A. (2020). A Review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete. Materials, 13(11), 2625-2644. https://doi.org/10.3390/ma13112625 DOI: https://doi.org/10.3390/ma13112625
Bisht, K. y Ramana, P. V. (2017). Evaluation of mechanical and durability properties of crumb rubber concrete. Construction and Building Materials, 155, 811-817. https://doi.org/10.1016/j.conbuildmat.2017.08.131 DOI: https://doi.org/10.1016/j.conbuildmat.2017.08.131
Bravo, M. y De Brito, J. (2012). Concrete made with used tyre aggregate: Durability-related performance. Journal of Cleaner Production, 25, 42-50. https://doi.org/10.1016/j.jclepro.2011.11.066 DOI: https://doi.org/10.1016/j.jclepro.2011.11.066
Chen, A., Han, X., Wang, Z. y Guo, T. (2021). Dynamic Properties of Pretreated Rubberized Concrete under Incremental Loading. Materials, 14(9), 2183-2201. https://doi.org/10.3390/ma14092183 DOI: https://doi.org/10.3390/ma14092183
Chen, Z., Li, L. y Xiong, Z. (2019). Investigation on the interfacial behaviour between the rubber-cement matrix of the rubberized concrete. Journal of Cleaner Production, 209, 1354-1364. https://doi.org/10.1016/j.jclepro.2018.10.305 DOI: https://doi.org/10.1016/j.jclepro.2018.10.305
Corinaldesi, V., Mazzoli, A. y Moriconi, G. (2011). Mechanical behaviour and thermal conductivity of mortars containing waste rubber particles. Materials & Design, 32(3), 1646-1650. https://doi.org/10.1016/j.matdes.2010.10.013 DOI: https://doi.org/10.1016/j.matdes.2010.10.013
Dezhampanah, S., Nikbin, I., Charkhtab, S., Fakhimi, F., Bazkiaei, S. M. y Mohebbi, R. (2020). Environmental performance and durability of concrete incorporating waste tire rubber and steel fiber subjected to acid attack. Journal of Cleaner Production, 268. https://doi.org/10.1016/j.jclepro.2020.122216 DOI: https://doi.org/10.1016/j.jclepro.2020.122216
Fraile-Garcia, E., Ferreiro-Cabello, J., Defez, B. y Peris-Fajanes, G. (2016). Acoustic behavior of hollow blocks and bricks made of concrete doped withwaste-tire rubber. Materials, 9(12), 962-973. https://doi.org/10.3390/ma9120962 DOI: https://doi.org/10.3390/ma9120962
Ganesan, N., Bharati Raj, J. y Shashikala, A. P. (2013). Flexural fatigue behavior of self compacting rubberized concrete. Construction and Building Materials, 44, 7-14. https://doi.org/10.1016/j.conbuildmat.2013.02.077 DOI: https://doi.org/10.1016/j.conbuildmat.2013.02.077
Ganjian, E., Khorami, M. y Maghsoudi, A. A. (2009). Scrap-tyre-rubber replacement for aggregate and filler in concrete. Construction and Building Materials, 23(5), 1828-1836. https://doi.org/10.1016/j.conbuildmat.2008.09.020 DOI: https://doi.org/10.1016/j.conbuildmat.2008.09.020
Gesoğlu, M. y Güneyisi, E. (2007). Strength development and chloride penetration in rubberized concretes with and without silica fume. Materials and Structures, 40(9), 953-964. https://doi.org/10.1617/s11527-007-9279-0 DOI: https://doi.org/10.1617/s11527-007-9279-0
Gesoğlu, M. y Güneyisi, E. (2011). Permeability properties of self-compacting rubberized concretes. Construction and Building Materials, 25(8), 3319-3326. https://doi.org/10.1016/j.conbuildmat.2011.03.021 DOI: https://doi.org/10.1016/j.conbuildmat.2011.03.021
Gesoğlu, M., Güneyisi, E., Khoshnaw, G. y İpek, S. (2014). Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Construction and Building Materials, 73, 19-24. https://doi.org/10.1016/j.conbuildmat.2014.09.047 DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.047
Granzotto, L. y de Souza, R. A. D. (2013). Mechanical properties of structural concrete with partial replacement of fine aggregate by tire rubber. Acta Scientiarum - Technology, 35(1), 39-44. https://doi.org/10.4025/actascitechnol.v35i1.11283 DOI: https://doi.org/10.4025/actascitechnol.v35i1.11283
Grinys, A., Sivilevičius, H. y Daukšys, M. (2012). Tyre rubber additive effect on concrete mixture strength. Journal of Civil Engineering and Management, 18(3), 393-401. https://doi.org/10.3846/13923730.2012.693536 DOI: https://doi.org/10.3846/13923730.2012.693536
Gupta, T., Chaudhary, S. y Sharma, R. K. (2014). Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Construction and Building Materials, 73, 562-574. https://doi.org/10.1016/j.conbuildmat.2014.09.102 DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.102
Habib, A., Yildirm, U. y Eren, O. (2020). Mechanical and dynamic properties of high strength concrete with well graded coarse and fine tire rubber. Construction and Building Materials, 246, 118502 (1-11). https://doi.org/10.1016/j.conbuildmat.2020.118502 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118502
Hilal, N. N. (2017). Hardened properties of self-compacting concrete with different crumb rubber size and content. International Journal of Sustainable Built Environment, 6(1), 191-206. https://doi.org/10.1016/j.ijsbe.2017.03.001 DOI: https://doi.org/10.1016/j.ijsbe.2017.03.001
Holmes, N., Browne, A. y Montague, C. (2014). Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Construction and Building Materials, 73, 195-204. https://doi.org/10.1016/j.conbuildmat.2014.09.107 DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.107
Instituto Colombiano de Normas Técnicas y Certificación. (2021). Concretos. Método de ensayo de resistencia a la compresión de especímenes cilíndricos de concreto. https://acortar.link/QpEiMH
Instituto Colombiano de Normas Técnicas y Certificación. (2018). Método de ensayo para determinar la resistencia del concreto a la flexión (utilizando una viga simple con carga en los tercios medios). https://acortar.link/NcoxJC
Issa, C. A. y Salem, G. (2013). Utilization of recycled crumb rubber as fine aggregates in concrete mix design. Construction and Building Materials, 42, 48-52. https://doi.org/10.1016/j.conbuildmat.2012.12.054 DOI: https://doi.org/10.1016/j.conbuildmat.2012.12.054
Jackson, M. D., Mulcahy, S. R., Chen, H., Li, Y., Li, Q., Cappelletti, P. y Wenk, H.-R. (2017). Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. American Mineralogist, 102(7), 1435-1450. https://doi.org/10.2138/am-2017-5993CCBY DOI: https://doi.org/10.2138/am-2017-5993CCBY
Julio, L. L., Figueredo, F. A. y Tuiran, O. (2024). Propiedades del concreto con partículas de neumático reciclado: Revisión Sistemática de la Literatura. V. Meriño et al. (Eds.). Gestión del Conocimiento Perspectiva Multidisciplinaria, 98-130. https://acortar.link/eyW4jM DOI: https://doi.org/10.59899/Ges-cono-62-C5
Kaewunruen, S., Li, D., Chen, Y. y Xiang, Z. (2018). Enhancement of dynamic damping in eco-friendly railway concrete sleepers using waste-tyre crumb rubber. Materials, 11(7), 1169-1188. https://doi.org/10.3390/ma11071169 DOI: https://doi.org/10.3390/ma11071169
Kajaste, R. y Hurme, M. (2016). Cement industry greenhouse gas emissions – management options and abatement cost. Journal of Cleaner Production, 112, 4041-4052. https://doi.org/10.1016/j.jclepro.2015.07.055 DOI: https://doi.org/10.1016/j.jclepro.2015.07.055
Khaloo, A. R., Dehestani, M. y Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Management, 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015 DOI: https://doi.org/10.1016/j.wasman.2008.01.015
Ling, T. C., Nor, H. M. y Lim, S. K. (2010). Using recycled waste tyres in concrete paving blocks. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 163(1), 37-45. https://doi.org/10.1680/warm.2010.163.1.37 DOI: https://doi.org/10.1680/warm.2010.163.1.37
Liu, H., Wang, X., Jiao, Y. y Sha, T. (2016). Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete. Materials, 9(3), 172-183. https://doi.org/10.3390/ma9030172 DOI: https://doi.org/10.3390/ma9030172
Lv, J., Zhou, T., Li, K. y Sun, K. (2019). Shrinkage Properties of Self-Compacting Rubber Lightweight Aggregate Concrete: Experimental and Analytical Studies. Materials, 12(24), 4059-4072. https://doi.org/10.3390/ma12244059 DOI: https://doi.org/10.3390/ma12244059
M. Mhaya, A., Baghban, M. H., Faridmehr, I., Huseien, G. F., Abidin, A. R. Z. y Ismail, M. (2021). Performance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environments. Materials, 14(8), 1900-1925. https://doi.org/10.3390/ma14081900 DOI: https://doi.org/10.3390/ma14081900
Mackechnie, J. R. y Alexander, M. G. (2009). Using Durability To Enhance Concrete Sustainability. Journal of Green Building, 4(3), 52-60. https://doi.org/10.3992/jgb.4.3.52 DOI: https://doi.org/10.3992/jgb.4.3.52
Maragh, J. M., Weaver, J. C. y Masic, A. (2019). Large-scale micron-order 3D surface correlative chemical imaging of ancient Roman concrete. PLoS ONE, 14(2), e0210710. https://doi.org/10.1371/journal.pone.0210710 DOI: https://doi.org/10.1371/journal.pone.0210710
Mohammadi, I., Khabbaz, H. y Vessalas, K. (2014). In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements. Construction and Building Materials, 71, 456-471. https://doi.org/10.1016/j.conbuildmat.2014.08.085 DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.085
Mohammed, B. S., Anwar Hossain, K. M., Eng Swee, J. T., Wong, G. y Abdullahi, M. (2012). Properties of crumb rubber hollow concrete block. Journal of Cleaner Production, 23(1), 57-67. https://doi.org/10.1016/j.jclepro.2011.10.035 DOI: https://doi.org/10.1016/j.jclepro.2011.10.035
Murali, M., Mohammed, B. S., Abdulkadir, I., Liew, M. S. y Alaloul, W. S. (2021). Utilization of crumb rubber and high-volume fly ash in concrete for environmental sustainability: Rsm-based modeling and optimization. Materials, 14(12). https://doi.org/10.3390/ma14123322 DOI: https://doi.org/10.3390/ma14123322
Murugan, R. B., Sai, E. R., Natarajan, C. y Chen, S. E. (2017). Flexural fatigue performance and mechanical properties of rubberized concrete. Gradjevinar, 69(11), 983-990. https://doi.org/10.14256/JCE.1427.2015 DOI: https://doi.org/10.14256/JCE.1427.2015
Nocera, F., Wang, J., Faleschini, F., Demartino, C. y Gardoni, P. (2022). Probabilistic models of concrete compressive strength and elastic modulus with rubber aggregates. Construction and Building Materials, 322, 126145. https://doi.org/10.1016/j.conbuildmat.2021.126145 DOI: https://doi.org/10.1016/j.conbuildmat.2021.126145
Ramdani, S., Guettala, A., Benmalek, M. y Aguiar, J. B. (2019). Physical and mechanical performance of concrete made with waste rubber aggregate, glass powder and silica sand powder. Journal of Building Engineering, 21, 302-311. https://doi.org/10.1016/j.jobe.2018.11.003 DOI: https://doi.org/10.1016/j.jobe.2018.11.003
Saberian, M. y Li, J. (2021). Effect of freeze–thaw cycles on the resilient moduli and unconfined compressive strength of rubberized recycled concrete aggregate as pavement base/subbase. Transportation Geotechnics, 27, 10477 (1-8) https://doi.org/10.1016/j.trgeo.2020.100477 DOI: https://doi.org/10.1016/j.trgeo.2020.100477
Saberian, M., Shi, L., Sidiq, A., Li, J., Setunge, S. y Li, C. Q. (2019). Recycled concrete aggregate mixed with crumb rubber under elevated temperature. Construction and Building Materials, 222, 119-129. https://doi.org/10.1016/j.conbuildmat.2019.06.133 DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.133
Saha, A. K. y Sarker, P. K. (2018). Durability of Mortar Incorporating Ferronickel Slag Aggregate and Supplementary Cementitious Materials Subjected to Wet–Dry Cycles. International Journal of Concrete Structures and Materials, 12(1), 29-40. https://doi.org/10.1186/s40069-018-0264-5 DOI: https://doi.org/10.1186/s40069-018-0264-5
Seymour, L. M., Maragh, J., Sabatini, P., Di Tommaso, M., Weaver, J. C. y Masic, A. (2023). Hot mixing: Mechanistic insights into the durability of ancient Roman concrete. Science Advances, 9(1), eadd1602. https://doi.org/10.1126/sciadv.add1602 DOI: https://doi.org/10.1126/sciadv.add1602
Sofi, A. (2018). Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Ain Shams Engineering Journal, 9(4), 2691-2700. https://doi.org/10.1016/j.asej.2017.08.007 DOI: https://doi.org/10.1016/j.asej.2017.08.007
Su, H., Yang, J., Ling, T.-C., Ghataora, G. S. y Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288-296. https://doi.org/10.1016/j.jclepro.2014.12.022 DOI: https://doi.org/10.1016/j.jclepro.2014.12.022
Tang, Y., Feng, W., Feng, W., Chen, J., Bao, D. y Li, L. (2021). Compressive properties of rubber-modified recycled aggregate concrete subjected to elevated temperatures. Construction and Building Materials, 268, 121181 (1-11) https://doi.org/10.1016/j.conbuildmat.2020.121181 DOI: https://doi.org/10.1016/j.conbuildmat.2020.121181
Thomas, B. S. y Gupta, R. C. (2015). Long term behaviour of cement concrete containing discarded tire rubber. Journal of Cleaner Production, 102, 78-87. https://doi.org/10.1016/j.jclepro.2015.04.072 DOI: https://doi.org/10.1016/j.jclepro.2015.04.072
Thomas, B. S., Gupta, R. C., Mehra, P. y Kumar, S. (2015). Performance of high strength rubberized concrete in aggressive environment. Construction and Building Materials, 83, 320-326. https://doi.org/10.1016/j.conbuildmat.2015.03.012 DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.012
Ulewicz, M. (2021). Recycled Materials for Concrete and Other Composites. Materials, 14(9), 2279 (1-3). https://doi.org/10.3390/ma14092279 DOI: https://doi.org/10.3390/ma14092279
Valente, M. y Sibai, A. (2019). Rubber/crete: Mechanical properties of scrap to reuse tire-derived rubber in concrete; A review. Journal of Applied Biomaterials & Functional Materials, 17(1), 1-8. https://doi.org/10.1177/2280800019835486 DOI: https://doi.org/10.1177/2280800019835486
Wang, Y., Chen, J., Gao, D. y Huang, E. (2018). Mechanical Properties of Steel Fibers and Nanosilica Modified Crumb Rubber Concrete. Advances in Civil Engineering, 2018, 1-10. https://doi.org/10.1155/2018/6715813 DOI: https://doi.org/10.1155/2018/6715813
Xu, J., Niu, X. y Yao, Z. (2021). Mechanical properties and acoustic emission data analyses of crumb rubber concrete under biaxial compression stress states. Construction and Building Materials, 298, 123778 (1-15). https://doi.org/10.1016/j.conbuildmat.2021.123778 DOI: https://doi.org/10.1016/j.conbuildmat.2021.123778
Xue, J. y Masanobu. (2013). Rubberized concrete: A green structural material with enhanced energy-dissipation capability. Construction and Building Materials, 42, 196-204. https://doi.org/10.1016/j.conbuildmat.2013.01.005 DOI: https://doi.org/10.1016/j.conbuildmat.2013.01.005
Yehia, S., Ibrahim, A. M. y Ahmed, D. F. (2023). The impact of using natural waste biopolymer cement on the properties of traditional/fibrous concrete. Innovative Infrastructure Solutions, 8(11), 287-300. https://doi.org/10.1007/s41062-023-01253-z DOI: https://doi.org/10.1007/s41062-023-01253-z
Youssf, O., ElGawady, M. A., Mills, J. E. y Ma, X. (2014). An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes. Construction and Building Materials, 53, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007 DOI: https://doi.org/10.1016/j.conbuildmat.2013.12.007
Youssf, O., Hassanli, R., Mills, J. E. y Abd Elrahman, M. (2018). An experimental investigation of the mechanical performance and structural application of LECA-Rubcrete. Construction and Building Materials, 175, 239-253. https://doi.org/10.1016/j.conbuildmat.2018.04.184 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.184
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Libia Julio Galvis, Fernando Figueredo Negrete, Luis Laguna Álvarez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Datos de los fondos
-
Corporación Universitaria Remington
Números de la subvención 4000000313