Evaluación de la resistencia a la compresión y flexión del concreto modificado con fragmentos de residuos neumáticos

Autores/as

DOI:

https://doi.org/10.31637/epsir-2025-1267

Palabras clave:

neumático, mezcla de concreto, resistencia a la compresión, resistencia a la flexión, agregados del concreto, propiedades mecánicas, manejo de residuos, reciclaje

Resumen

Introducción: La exploración de alternativas para crear agregados y reutilizarlos como subproductos industriales es el foco de muchas investigaciones en ingeniería. Se evaluó el efecto de la sustitución parcial de arena y grava por partículas de neumáticos sobre las propiedades mecánicas de resistencia a la compresión y flexión del concreto. Metodología: Las mezclas se prepararon reemplazando en proporciones volumétricas de 0%, 25%, 50% y 75% con partículas de neumáticos, el agregado fino (arena) y agregado grueso (grava); también incluyó mezclas preparadas en combinación 25%:25% y 50%:50% de agregados finos y gruesos con partículas de neumáticos. Resultados: La resistencia a la compresión y flexión muestran una reducción al sustituir los áridos por partículas de neumático. La sustitución del agregado fino en la menor proporción (25%) ofrece una alternativa factible y sustentable para usos no estructurales, ya que presenta una menor variación en las propiedades evaluadas. Discusión: La incorporación de neumáticos disminuye las propiedades mecánicas debido a la baja adherencia interna entre las partículas de neumático y la matriz de cemento. Conclusiones: El neumático particulado en la fabricación del concreto constituye una estrategia eficaz para reducir el consumo de grandes cantidades de áridos naturales y mitigar su impacto su ambiental.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Libia Julio Galvis, Corporación Universitaria Remington

Doctorado en Química, Químico, con área de actuación general en Ciencias exactas, Química, Fisicoquímica y Química Orgánica y con especialidad en Fisicoquímica Orgánica. Capacidad de abordar adecuadamente la determinación química cualitativa y cuantitativa en diversas matrices (alimentos, bebidas alcohólicas, agua potable). Experiencia en estudios enfocados en el desarrollo de agregados alternativos como opción de reemplazo total o parcial áridos naturales en la elaboración del concreto.

Fernando Figueredo Negrete, Corporación Universitaria Remington

Especialista en gerencia de proyectos, Químico, experiencia en la implementación de técnicas computacionales para la solución, la predicción y el reconocimiento de patrones complejos en problemas de investigación en química, física, biología, medicina o medio ambiente. Habilidades en el área de la tecnología y la optimización de los recursos disponibles para la planificación, diseño de experimentos y el manejo eficiente de volúmenes y procesamiento de datos.

Luis Laguna Álvarez , Corporación Universitaria Remington

Estudiante VII semestre de Ingeniería Ambiental.
Bachiller académico. Competencia lenguaje de programación MATLAB/Octave.
Experiencia en formulación de proyectos participativos en contextos multiculturales. Participación en procesos de investigación formativa, análisis de resultados, redacción de carácter científico y toma de muestras de concreto en obra.

Citas

Ahmad, Z. (3 de julio 2017). Why modern mortar crumbles, but Roman concrete lasts millennia. https://doi.org/10.1126/ciencia.aan7051 DOI: https://doi.org/10.1126/science.aan7051

Aiello, M. A. y Leuzzi, F. (2010). Waste tyre rubberized concrete: Properties at fresh and hardened state. Waste Management, 30(8-9), 1696-1704. https://doi.org/10.1016/j.wasman.2010.02.005 DOI: https://doi.org/10.1016/j.wasman.2010.02.005

Al-Fakih, A., Mohammed, B. S., Wahab, M. M. A., Liew, M. S. y Mugahed Amran, Y. H. (2020). Flexural behavior of rubberized concrete interlocking masonry walls under out-of-plane load. Construction and Building Materials, 263, 120661 (1-10). https://doi.org/10.1016/j.conbuildmat.2020.120661 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120661

Al-Tayeb, M. M., Abu Bakar, B. H., Akil, H. M. y Ismail, H. (2012). Effect of Partial Replacements of Sand and Cement by Waste Rubber on the Fracture Characteristics of Concrete. Polymer - Plastics Technology and Engineering, 51(6), 583-589. https://doi.org/10.1080/03602559.2012.659307 DOI: https://doi.org/10.1080/03602559.2012.659307

Al-Tayeb, M. M., Abu Bakar, B. H., Ismail, H. y Akil, H. M. (2013). Effect of partial replacement of sand by recycled fine crumb rubber on the performance of hybrid rubberized-normal concrete under impact load: Experiment and simulation. Journal of Cleaner Production, 59, 284-289. https://doi.org/10.1016/j.jclepro.2013.04.026 DOI: https://doi.org/10.1016/j.jclepro.2013.04.026

Alsaif, A., Koutas, L., Bernal, S. A., Guadagnini, M. y Pilakoutas, K. (2018). Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements. Construction and Building Materials, 172, 533-543. https://doi.org/10.1016/j.conbuildmat.2018.04.010 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.010

Aslani, F. y Kelin, J. (2018). Assessment and development of high-performance fibre-reinforced lightweight self-compacting concrete including recycled crumb rubber aggregates exposed to elevated temperatures. Journal of Cleaner Production, 200, 1009-1025. https://doi.org/10.1016/j.jclepro.2018.07.323 DOI: https://doi.org/10.1016/j.jclepro.2018.07.323

Aslani, F., Ma, G., Yim Wan, D. L. y Tran Le, V. X. (2018). Experimental investigation into rubber granules and their effects on the fresh and hardened properties of self-compacting concrete. Journal of Cleaner Production, 172, 1835-1847. https://doi.org/10.1016/j.jclepro.2017.12.003 DOI: https://doi.org/10.1016/j.jclepro.2017.12.003

Assaggaf, R. A., Maslehuddin, M., Al-Dulaijan, S. U., Al-Osta, M. A., Ali, M. R. y Shameem, M. (2022). Cost-effective treatment of crumb rubber to improve the properties of crumb-rubber concrete. Case Studies in Construction Materials, 16, e00881. https://doi.org/10.1016/j.cscm.2022.e00881 DOI: https://doi.org/10.1016/j.cscm.2022.e00881

Bae, S.-H., Lee, J.-I. y Choi, S.-J. (2021). Characteristics of Mortars with Blast Furnace Slag Powder and Mixed Fine Aggregates Containing Ferronickel-Slag Aggregate. Materials, 14(19), 5879-5888. https://doi.org/10.3390/ma14195879 DOI: https://doi.org/10.3390/ma14195879

Barreto Santos, M., De Brito, J. y Santos Silva, A. (2020). A Review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete. Materials, 13(11), 2625-2644. https://doi.org/10.3390/ma13112625 DOI: https://doi.org/10.3390/ma13112625

Bisht, K. y Ramana, P. V. (2017). Evaluation of mechanical and durability properties of crumb rubber concrete. Construction and Building Materials, 155, 811-817. https://doi.org/10.1016/j.conbuildmat.2017.08.131 DOI: https://doi.org/10.1016/j.conbuildmat.2017.08.131

Bravo, M. y De Brito, J. (2012). Concrete made with used tyre aggregate: Durability-related performance. Journal of Cleaner Production, 25, 42-50. https://doi.org/10.1016/j.jclepro.2011.11.066 DOI: https://doi.org/10.1016/j.jclepro.2011.11.066

Chen, A., Han, X., Wang, Z. y Guo, T. (2021). Dynamic Properties of Pretreated Rubberized Concrete under Incremental Loading. Materials, 14(9), 2183-2201. https://doi.org/10.3390/ma14092183 DOI: https://doi.org/10.3390/ma14092183

Chen, Z., Li, L. y Xiong, Z. (2019). Investigation on the interfacial behaviour between the rubber-cement matrix of the rubberized concrete. Journal of Cleaner Production, 209, 1354-1364. https://doi.org/10.1016/j.jclepro.2018.10.305 DOI: https://doi.org/10.1016/j.jclepro.2018.10.305

Corinaldesi, V., Mazzoli, A. y Moriconi, G. (2011). Mechanical behaviour and thermal conductivity of mortars containing waste rubber particles. Materials & Design, 32(3), 1646-1650. https://doi.org/10.1016/j.matdes.2010.10.013 DOI: https://doi.org/10.1016/j.matdes.2010.10.013

Dezhampanah, S., Nikbin, I., Charkhtab, S., Fakhimi, F., Bazkiaei, S. M. y Mohebbi, R. (2020). Environmental performance and durability of concrete incorporating waste tire rubber and steel fiber subjected to acid attack. Journal of Cleaner Production, 268. https://doi.org/10.1016/j.jclepro.2020.122216 DOI: https://doi.org/10.1016/j.jclepro.2020.122216

Fraile-Garcia, E., Ferreiro-Cabello, J., Defez, B. y Peris-Fajanes, G. (2016). Acoustic behavior of hollow blocks and bricks made of concrete doped withwaste-tire rubber. Materials, 9(12), 962-973. https://doi.org/10.3390/ma9120962 DOI: https://doi.org/10.3390/ma9120962

Ganesan, N., Bharati Raj, J. y Shashikala, A. P. (2013). Flexural fatigue behavior of self compacting rubberized concrete. Construction and Building Materials, 44, 7-14. https://doi.org/10.1016/j.conbuildmat.2013.02.077 DOI: https://doi.org/10.1016/j.conbuildmat.2013.02.077

Ganjian, E., Khorami, M. y Maghsoudi, A. A. (2009). Scrap-tyre-rubber replacement for aggregate and filler in concrete. Construction and Building Materials, 23(5), 1828-1836. https://doi.org/10.1016/j.conbuildmat.2008.09.020 DOI: https://doi.org/10.1016/j.conbuildmat.2008.09.020

Gesoğlu, M. y Güneyisi, E. (2007). Strength development and chloride penetration in rubberized concretes with and without silica fume. Materials and Structures, 40(9), 953-964. https://doi.org/10.1617/s11527-007-9279-0 DOI: https://doi.org/10.1617/s11527-007-9279-0

Gesoğlu, M. y Güneyisi, E. (2011). Permeability properties of self-compacting rubberized concretes. Construction and Building Materials, 25(8), 3319-3326. https://doi.org/10.1016/j.conbuildmat.2011.03.021 DOI: https://doi.org/10.1016/j.conbuildmat.2011.03.021

Gesoğlu, M., Güneyisi, E., Khoshnaw, G. y İpek, S. (2014). Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Construction and Building Materials, 73, 19-24. https://doi.org/10.1016/j.conbuildmat.2014.09.047 DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.047

Granzotto, L. y de Souza, R. A. D. (2013). Mechanical properties of structural concrete with partial replacement of fine aggregate by tire rubber. Acta Scientiarum - Technology, 35(1), 39-44. https://doi.org/10.4025/actascitechnol.v35i1.11283 DOI: https://doi.org/10.4025/actascitechnol.v35i1.11283

Grinys, A., Sivilevičius, H. y Daukšys, M. (2012). Tyre rubber additive effect on concrete mixture strength. Journal of Civil Engineering and Management, 18(3), 393-401. https://doi.org/10.3846/13923730.2012.693536 DOI: https://doi.org/10.3846/13923730.2012.693536

Gupta, T., Chaudhary, S. y Sharma, R. K. (2014). Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Construction and Building Materials, 73, 562-574. https://doi.org/10.1016/j.conbuildmat.2014.09.102 DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.102

Habib, A., Yildirm, U. y Eren, O. (2020). Mechanical and dynamic properties of high strength concrete with well graded coarse and fine tire rubber. Construction and Building Materials, 246, 118502 (1-11). https://doi.org/10.1016/j.conbuildmat.2020.118502 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118502

Hilal, N. N. (2017). Hardened properties of self-compacting concrete with different crumb rubber size and content. International Journal of Sustainable Built Environment, 6(1), 191-206. https://doi.org/10.1016/j.ijsbe.2017.03.001 DOI: https://doi.org/10.1016/j.ijsbe.2017.03.001

Holmes, N., Browne, A. y Montague, C. (2014). Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Construction and Building Materials, 73, 195-204. https://doi.org/10.1016/j.conbuildmat.2014.09.107 DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.107

Instituto Colombiano de Normas Técnicas y Certificación. (2021). Concretos. Método de ensayo de resistencia a la compresión de especímenes cilíndricos de concreto. https://acortar.link/QpEiMH

Instituto Colombiano de Normas Técnicas y Certificación. (2018). Método de ensayo para determinar la resistencia del concreto a la flexión (utilizando una viga simple con carga en los tercios medios). https://acortar.link/NcoxJC

Issa, C. A. y Salem, G. (2013). Utilization of recycled crumb rubber as fine aggregates in concrete mix design. Construction and Building Materials, 42, 48-52. https://doi.org/10.1016/j.conbuildmat.2012.12.054 DOI: https://doi.org/10.1016/j.conbuildmat.2012.12.054

Jackson, M. D., Mulcahy, S. R., Chen, H., Li, Y., Li, Q., Cappelletti, P. y Wenk, H.-R. (2017). Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. American Mineralogist, 102(7), 1435-1450. https://doi.org/10.2138/am-2017-5993CCBY DOI: https://doi.org/10.2138/am-2017-5993CCBY

Julio, L. L., Figueredo, F. A. y Tuiran, O. (2024). Propiedades del concreto con partículas de neumático reciclado: Revisión Sistemática de la Literatura. V. Meriño et al. (Eds.). Gestión del Conocimiento Perspectiva Multidisciplinaria, 98-130. https://acortar.link/eyW4jM DOI: https://doi.org/10.59899/Ges-cono-62-C5

Kaewunruen, S., Li, D., Chen, Y. y Xiang, Z. (2018). Enhancement of dynamic damping in eco-friendly railway concrete sleepers using waste-tyre crumb rubber. Materials, 11(7), 1169-1188. https://doi.org/10.3390/ma11071169 DOI: https://doi.org/10.3390/ma11071169

Kajaste, R. y Hurme, M. (2016). Cement industry greenhouse gas emissions – management options and abatement cost. Journal of Cleaner Production, 112, 4041-4052. https://doi.org/10.1016/j.jclepro.2015.07.055 DOI: https://doi.org/10.1016/j.jclepro.2015.07.055

Khaloo, A. R., Dehestani, M. y Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Management, 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015 DOI: https://doi.org/10.1016/j.wasman.2008.01.015

Ling, T. C., Nor, H. M. y Lim, S. K. (2010). Using recycled waste tyres in concrete paving blocks. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 163(1), 37-45. https://doi.org/10.1680/warm.2010.163.1.37 DOI: https://doi.org/10.1680/warm.2010.163.1.37

Liu, H., Wang, X., Jiao, Y. y Sha, T. (2016). Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete. Materials, 9(3), 172-183. https://doi.org/10.3390/ma9030172 DOI: https://doi.org/10.3390/ma9030172

Lv, J., Zhou, T., Li, K. y Sun, K. (2019). Shrinkage Properties of Self-Compacting Rubber Lightweight Aggregate Concrete: Experimental and Analytical Studies. Materials, 12(24), 4059-4072. https://doi.org/10.3390/ma12244059 DOI: https://doi.org/10.3390/ma12244059

M. Mhaya, A., Baghban, M. H., Faridmehr, I., Huseien, G. F., Abidin, A. R. Z. y Ismail, M. (2021). Performance Evaluation of Modified Rubberized Concrete Exposed to Aggressive Environments. Materials, 14(8), 1900-1925. https://doi.org/10.3390/ma14081900 DOI: https://doi.org/10.3390/ma14081900

Mackechnie, J. R. y Alexander, M. G. (2009). Using Durability To Enhance Concrete Sustainability. Journal of Green Building, 4(3), 52-60. https://doi.org/10.3992/jgb.4.3.52 DOI: https://doi.org/10.3992/jgb.4.3.52

Maragh, J. M., Weaver, J. C. y Masic, A. (2019). Large-scale micron-order 3D surface correlative chemical imaging of ancient Roman concrete. PLoS ONE, 14(2), e0210710. https://doi.org/10.1371/journal.pone.0210710 DOI: https://doi.org/10.1371/journal.pone.0210710

Mohammadi, I., Khabbaz, H. y Vessalas, K. (2014). In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements. Construction and Building Materials, 71, 456-471. https://doi.org/10.1016/j.conbuildmat.2014.08.085 DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.085

Mohammed, B. S., Anwar Hossain, K. M., Eng Swee, J. T., Wong, G. y Abdullahi, M. (2012). Properties of crumb rubber hollow concrete block. Journal of Cleaner Production, 23(1), 57-67. https://doi.org/10.1016/j.jclepro.2011.10.035 DOI: https://doi.org/10.1016/j.jclepro.2011.10.035

Murali, M., Mohammed, B. S., Abdulkadir, I., Liew, M. S. y Alaloul, W. S. (2021). Utilization of crumb rubber and high-volume fly ash in concrete for environmental sustainability: Rsm-based modeling and optimization. Materials, 14(12). https://doi.org/10.3390/ma14123322 DOI: https://doi.org/10.3390/ma14123322

Murugan, R. B., Sai, E. R., Natarajan, C. y Chen, S. E. (2017). Flexural fatigue performance and mechanical properties of rubberized concrete. Gradjevinar, 69(11), 983-990. https://doi.org/10.14256/JCE.1427.2015 DOI: https://doi.org/10.14256/JCE.1427.2015

Nocera, F., Wang, J., Faleschini, F., Demartino, C. y Gardoni, P. (2022). Probabilistic models of concrete compressive strength and elastic modulus with rubber aggregates. Construction and Building Materials, 322, 126145. https://doi.org/10.1016/j.conbuildmat.2021.126145 DOI: https://doi.org/10.1016/j.conbuildmat.2021.126145

Ramdani, S., Guettala, A., Benmalek, M. y Aguiar, J. B. (2019). Physical and mechanical performance of concrete made with waste rubber aggregate, glass powder and silica sand powder. Journal of Building Engineering, 21, 302-311. https://doi.org/10.1016/j.jobe.2018.11.003 DOI: https://doi.org/10.1016/j.jobe.2018.11.003

Saberian, M. y Li, J. (2021). Effect of freeze–thaw cycles on the resilient moduli and unconfined compressive strength of rubberized recycled concrete aggregate as pavement base/subbase. Transportation Geotechnics, 27, 10477 (1-8) https://doi.org/10.1016/j.trgeo.2020.100477 DOI: https://doi.org/10.1016/j.trgeo.2020.100477

Saberian, M., Shi, L., Sidiq, A., Li, J., Setunge, S. y Li, C. Q. (2019). Recycled concrete aggregate mixed with crumb rubber under elevated temperature. Construction and Building Materials, 222, 119-129. https://doi.org/10.1016/j.conbuildmat.2019.06.133 DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.133

Saha, A. K. y Sarker, P. K. (2018). Durability of Mortar Incorporating Ferronickel Slag Aggregate and Supplementary Cementitious Materials Subjected to Wet–Dry Cycles. International Journal of Concrete Structures and Materials, 12(1), 29-40. https://doi.org/10.1186/s40069-018-0264-5 DOI: https://doi.org/10.1186/s40069-018-0264-5

Seymour, L. M., Maragh, J., Sabatini, P., Di Tommaso, M., Weaver, J. C. y Masic, A. (2023). Hot mixing: Mechanistic insights into the durability of ancient Roman concrete. Science Advances, 9(1), eadd1602. https://doi.org/10.1126/sciadv.add1602 DOI: https://doi.org/10.1126/sciadv.add1602

Sofi, A. (2018). Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Ain Shams Engineering Journal, 9(4), 2691-2700. https://doi.org/10.1016/j.asej.2017.08.007 DOI: https://doi.org/10.1016/j.asej.2017.08.007

Su, H., Yang, J., Ling, T.-C., Ghataora, G. S. y Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288-296. https://doi.org/10.1016/j.jclepro.2014.12.022 DOI: https://doi.org/10.1016/j.jclepro.2014.12.022

Tang, Y., Feng, W., Feng, W., Chen, J., Bao, D. y Li, L. (2021). Compressive properties of rubber-modified recycled aggregate concrete subjected to elevated temperatures. Construction and Building Materials, 268, 121181 (1-11) https://doi.org/10.1016/j.conbuildmat.2020.121181 DOI: https://doi.org/10.1016/j.conbuildmat.2020.121181

Thomas, B. S. y Gupta, R. C. (2015). Long term behaviour of cement concrete containing discarded tire rubber. Journal of Cleaner Production, 102, 78-87. https://doi.org/10.1016/j.jclepro.2015.04.072 DOI: https://doi.org/10.1016/j.jclepro.2015.04.072

Thomas, B. S., Gupta, R. C., Mehra, P. y Kumar, S. (2015). Performance of high strength rubberized concrete in aggressive environment. Construction and Building Materials, 83, 320-326. https://doi.org/10.1016/j.conbuildmat.2015.03.012 DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.012

Ulewicz, M. (2021). Recycled Materials for Concrete and Other Composites. Materials, 14(9), 2279 (1-3). https://doi.org/10.3390/ma14092279 DOI: https://doi.org/10.3390/ma14092279

Valente, M. y Sibai, A. (2019). Rubber/crete: Mechanical properties of scrap to reuse tire-derived rubber in concrete; A review. Journal of Applied Biomaterials & Functional Materials, 17(1), 1-8. https://doi.org/10.1177/2280800019835486 DOI: https://doi.org/10.1177/2280800019835486

Wang, Y., Chen, J., Gao, D. y Huang, E. (2018). Mechanical Properties of Steel Fibers and Nanosilica Modified Crumb Rubber Concrete. Advances in Civil Engineering, 2018, 1-10. https://doi.org/10.1155/2018/6715813 DOI: https://doi.org/10.1155/2018/6715813

Xu, J., Niu, X. y Yao, Z. (2021). Mechanical properties and acoustic emission data analyses of crumb rubber concrete under biaxial compression stress states. Construction and Building Materials, 298, 123778 (1-15). https://doi.org/10.1016/j.conbuildmat.2021.123778 DOI: https://doi.org/10.1016/j.conbuildmat.2021.123778

Xue, J. y Masanobu. (2013). Rubberized concrete: A green structural material with enhanced energy-dissipation capability. Construction and Building Materials, 42, 196-204. https://doi.org/10.1016/j.conbuildmat.2013.01.005 DOI: https://doi.org/10.1016/j.conbuildmat.2013.01.005

Yehia, S., Ibrahim, A. M. y Ahmed, D. F. (2023). The impact of using natural waste biopolymer cement on the properties of traditional/fibrous concrete. Innovative Infrastructure Solutions, 8(11), 287-300. https://doi.org/10.1007/s41062-023-01253-z DOI: https://doi.org/10.1007/s41062-023-01253-z

Youssf, O., ElGawady, M. A., Mills, J. E. y Ma, X. (2014). An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes. Construction and Building Materials, 53, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007 DOI: https://doi.org/10.1016/j.conbuildmat.2013.12.007

Youssf, O., Hassanli, R., Mills, J. E. y Abd Elrahman, M. (2018). An experimental investigation of the mechanical performance and structural application of LECA-Rubcrete. Construction and Building Materials, 175, 239-253. https://doi.org/10.1016/j.conbuildmat.2018.04.184 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.184

Descargas

Publicado

2025-02-11

Cómo citar

Julio Galvis, L., Figueredo Negrete, F., & Laguna Álvarez , L. (2025). Evaluación de la resistencia a la compresión y flexión del concreto modificado con fragmentos de residuos neumáticos. European Public & Social Innovation Review, 10, 1–20. https://doi.org/10.31637/epsir-2025-1267

Número

Sección

Artículos Portada

Datos de los fondos