Tecnologías 4.0 (IOT y ciencia de datos) orientada a optimizar la gestión de proyectos de construcción
DOI:
https://doi.org/10.31637/epsir-2025-1621Palabras clave:
gestión de proyectos, ciencia de datos, internet de las cosas, sector construcción, cadena de valor, revisión sistemática, gestión de costos, gestión de tiemposResumen
Introducción: Este artículo presenta una investigación con el objetivo de establecer los niveles de apropiación de tecnologías emergentes, principalmente ciencia de datos e Internet de las cosas-IoT, en la gestión de proyectos del sector de la construcción. Metodología: Se llevó a cabo una investigación cuantitativa centrada en una revisión de literatura y el establecimiento del nivel de madurez tecnológica en la gestión de proyectos en Colombia. Se contó con la participación de 97 empresas. Resultados: Los resultados muestran alto interés del sector productivo y de la comunidad académica en el uso de las tecnologías relacionadas para la gestión de proyectos, priorizando áreas como costos, calidad, tiempos, alcance y riesgos. La incorporación estrategias innovadoras para la gestión de proyectos son claves para el sector Discusión: Los resultados son consecuentes con una temática de interés incremental en la comunidad académica. Se viene desarrollando ampliamente los conceptos a nivel internacional y se proyecta consolidación en Colombia. Conclusiones: El sector de la construcción Colombia tiene un importante camino en la incorporación de tecnologías emergentes , sin embargo existe el interés y disposición para realizarlo y aplicarlos en sus diferentes ciclos de vida de proyecto.
Descargas
Citas
Abdelouahid, R. A., Debauche, O. y Marzak, A. (2021). Internet of Things: A new Interoperable IoT Platform. Application to a Smart Building. The 18th International Conference on Mobile Systems and Pervasive Computing (MobiSPC), The 16th International Conference on Future Networks and Communications (FNC), The 11th International Conference on Sustainable Energy Information Technology, 191, 511-517. https://doi.org/10.1016/j.procs.2021.07.066
Akbari, S., Khanzadi, M., & Gholamian, M. R. (2018). Building a rough sets-based prediction model for classifying large-scale construction projects based on sustainable success index. Engineering, Construction and Architectural Management, 25(4), 534-558. https://doi.org/10.1108/ECAM-05-2016-0110
Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., Akinade, O. O. y Ahmed, A. A. (2020). Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 32, 101827. https://doi.org/10.1016/j.jobe.2020.101827
Arashpour, M., Bai, Y., Aranda-mena, G., Bab-Hadiashar, A., Hosseini, R. y Kalutara, P. (2017). Optimizing decisions in advanced manufacturing of prefabricated products: Theorizing supply chain configurations in off-site construction. Automation in Construction, 84, 146-153. https://doi.org/10.1016/j.autcon.2017.08.032
Arashpour, M., Heidarpour, A., Akbar Nezhad, A., Hosseinifard, Z., Chileshe, N. y Hosseini, R. (2020). Performance-based control of variability and tolerance in off-site manufacture and assembly: Optimization of penalty on poor production quality. Construction Management and Economics, 38(6), 502-514. https://doi.org/10.1080/01446193.2019.1616789
Arroyo, P., Tommelein, I. D., & Ballard, G. (2015). Comparing AHP and CBA as Decision Methods to Resolve the Choosing Problem in Detailed Design. Journal of Construction Engineering and Management, 141(1), 04014063. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000915
Begić, H., & Galić, M. (2021). A Systematic Review of Construction 4.0 in the Context of the BIM 4.0 Premise. Buildings, 11(8), 337.
Bilal, M., Oyedele, L. O., Kusimo, H. O., Owolabi, H. A., Akanbi, L. A., Ajayi, A. O., Akinade, O. O. y Davila Delgado, J. M. (2019). Investigating profitability performance of construction projects using big data: A project analytics approach. Journal of Building Engineering, 26, 100850. https://doi.org/10.1016/j.jobe.2019.100850
Boden, M. A. (2017). Inteligencia artificial. Turner.
Cao, Y., & Ashuri, B. (2020). Predicting the Volatility of Highway Construction Cost Index Using Long Short-Term Memory. Journal of Management in Engineering, 36(4), 04020020. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000784
Chang, W. y Grady, N. (2019, octubre 21). NIST Big Data Interoperability Framework: Volume 1, Definitions. Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.6028/NIST.SP.1500-1r2
Chen, K., Lu, W., Peng, Y., Rowlinson, S. y Huang, G. Q. (2015). Bridging BIM and building: From a literature review to an integrated conceptual framework. International Journal of Project Management, 33(6), 1405-1416. https://doi.org/10.1016/j.ijproman.2015.03.006
Chen, S. (2022). Construction Project Cost Management and Control System Based on Big Data. Mobile Information Systems, 2022, 7908649. https://doi.org/10.1155/2022/7908649
Cheng, M. Y., Cao, M. T. y Herianto, J. G. (2020). Symbiotic organisms search-optimized deep learning technique for mapping construction cash flow considering complexity of project. Chaos, Solitons & Fractals, 138, 109869. https://doi.org/10.1016/j.chaos.2020.109869
Coiduras-Sanagustín, A., Manchado-Pérez, E. y García-Hernández, C. (2024). Understanding perspectives on personal data privacy in Internet of Things (IoT): A Systematic Literature Review (SLR). Heliyon, e30357. https://doi.org/10.1016/j.heliyon.2024.e30357
Cooke, B. yWilliams, P. (2013). Construction planning, programming and control. John Wiley & Sons.
Darko, A., Chan, A. P. C., Adabre, M. A., Edwards, D. J., Hosseini, M. R. y Ameyaw, E. E. (2020). Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities. Automation in Construction, 112, 103081. https://doi.org/10.1016/j.autcon.2020.103081
Departamento Administrativo Nacional de Estadística - DANE. (2022). Indicadores Económicos Alrededor de la Construcción (IEAC). https://www.dane.gov.co/index.php/estadisticas-por-tema/construccion/indicadores-economicos-alrededor-de-la-construccion
Elkateb, S., Métwalli, A., Shendy, A. y Abu-Elanien, A. E. B. (2024). Machine learning and IoT – Based predictive maintenance approach for industrial applications. Alexandria Engineering Journal, 88, 298-309. https://doi.org/10.1016/j.aej.2023.12.065
Fang, L., Mei, B., Jiang, L. y Sun, J. (2020). Investigation of intelligent safety management information system for nuclear power construction projects. En ACM International Conference Proceeding Series (pp. 607-611). https://doi.org/10.1145/3452940.3453058
Feng, N. (2022). The Influence Mechanism of BIM on Green Building Engineering Project Management under the Background of Big Data. Applied Bionics and Biomechanics, 2022, 8227930. https://doi.org/10.1155/2022/8227930
Gupta, D. y Rani, R. (2019). A study of big data evolution and research challenges. Journal of Information Science, 45(3), 322-340. https://doi.org/10.1177/0165551518789880
Haider, M. (2015). Getting started with data science: Making sense of data with analytics. IBM Press.
Huang, Y., Shi, Q., Zuo, J., Pena-Mora, F. y Chen, J. (2021). Research status and challenges of data-driven construction project management in the big data context. Advances in Civil Engineering, 2021, 1-19.
Jiang, Y. y He, X. (2020). Overview of Applications of the Sensor Technologies for Construction Machinery. IEEE Access, 8, 110324-110335. https://doi.org/10.1109/ACCESS.2020.3001968
Katiyar, A. y Kumar, P. (2021). A Review of Internet of Things (IoT) in Construction Industry: Building a Better Future. International Journal of Advanced Science Computing and Engineering, 3(2), 65-72.
Kelleher, J. D. y Tierney, B. (2018). Data science. MIT Press.
Larson, E. y Gray, C. (2014). Project Management: The Managerial Process 6e. McGraw Hill.
Leśniak, A., Górka, M. y Skrzypczak, I. (2021). Barriers to BIM implementation in architecture, construction, and engineering projects—The polish study. Energies, 14(8), 2090.
Lester, A. (2013). Project Management, Planning and Control: Managing Engineering, Construction and Manufacturing Projects to PMI, APM and BSI Standards (p. 24). Elsevier Science.
Li, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z. y Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263, 121458. https://doi.org/10.1016/j.jclepro.2020.121458
Li, W., Duan, P. y Su, J. (2021). The effectiveness of project management construction with data mining and blockchain consensus. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02668-7
Loyola, M. (2018). Big data in building design: A review. J. Inf. Technol. Constr., 23, 259-284.
Mishra, M., Lourenço, P. B. y Ramana, G. V. (2022). Structural health monitoring of civil engineering structures by using the internet of things: A review. Journal of Building Engineering, 48, 103954. https://doi.org/10.1016/j.jobe.2021.103954
Mulcahy, R. (2013). Preparación para el Examen PMP (RMC Public).
Nekouvaght Tak, A., Taghaddos, H., Mousaei, A. y Hermann, U. (Rick). (2020). Evaluating industrial modularization strategies: Local vs. overseas fabrication. Automation in Construction, 114, 103175. https://doi.org/10.1016/j.autcon.2020.103175
Netscher, P. (2014). Successful Construction Project Management: The Practical Guide. Panet Publications.
Oxford Economics. (2021). Future of construction (p. 62). https://resources.oxfordeconomics.com/hubfs/Africa/Future-of-Construction-Full-Report.pdf
Palme, M., Lobato, A. y Carrasco, C. (2016). Quantitative Analysis of Factors Contributing to Urban Heat Island Effect in Cities of Latin-American Pacific Coast. Fourth International Conference on Countermeasures to Urban Heat Island, 30-31 May and 1 June 2016, 169, 199-206. https://doi.org/10.1016/j.proeng.2016.10.024
Parsamehr, M., Perera, U. S., Dodanwala, T. C., Perera, P. y Ruparathna, R. (2023). A review of construction management challenges and BIM-based solutions: Perspectives from the schedule, cost, quality, and safety management. Asian Journal of Civil Engineering, 24(1), 353-389.
Project Management Institute. (2017). Guía de los Fundamentos Para la Dirección de Proyectos (Guía del Pmbok) (6.a ed., p. 589).
Rouhiainen, L. (2018). Inteligencia artificial. Madrid: Alienta Editorial.
Sacks, R., Brilakis, I., Pikas, E., Xie, H. S. y Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering, 1, e14. https://doi.org/10.1017/dce.2020.16
Saka, A. B., Oyedele, L. O., Akanbi, L. A., Ganiyu, S. A., Chan, D. W. M. y Bello, S. A. (2023). Conversational artificial intelligence in the AEC industry: A review of present status, challenges and opportunities. Advanced Engineering Informatics, 55, 101869. https://doi.org/10.1016/j.aei.2022.101869
Salem, T. y Dragomir, M. (2022). Options for and Challenges of Employing Digital Twins in Construction Management. Applied Sciences, 12, 2928. https://doi.org/10.3390/app12062928
Soori, M., Arezoo, B. y Dastres, R. (2023). Internet of things for smart factories in industry 4.0, a review. Internet of Things and Cyber-Physical Systems.
Tang, D. y Liu, K. (2022). Exploring the Application of BIM Technology in the Whole Process of Construction Cost Management with Computational Intelligence. Computational Intelligence and Neuroscience, 2022, 4080879. https://doi.org/10.1155/2022/4080879
Wu, L. y AbouRizk, S. (2023). Towards construction’s digital future: A roadmap for enhancing data value. 225-238.
Xu, J., Lu, W., Ye, M., Webster, C. y Xue, F. (2020). An anatomy of waste generation flows in construction projects using passive bigger data. Waste Management, 106, 162-172. https://doi.org/10.1016/j.wasman.2020.03.024
Xue, F., Wu, L. y Lu, W. (2021). Semantic enrichment of building and city information models: A ten-year review. Advanced Engineering Informatics, 47, 101245. https://doi.org/10.1016/j.aei.2020.101245
You, Z. y Wu, C. (2019). A framework for data-driven informatization of the construction company. Advanced Engineering Informatics, 39, 269-277. https://doi.org/10.1016/j.aei.2019.02.002
Zabala-Vargas, S., Jaimes-Quintanilla, M. y Jimenez-Barrera, M. H. (2023). Big Data, Data Science, and Artificial Intelligence for Project Management in the Architecture, Engineering, and Construction Industry: A Systematic Review. Buildings, 13(12), 2944.
Zabala-Vargas, S., Jiménez-Barrera, M., Vargas-Sanchez, L. y Jaimes-Quintanilla, M. (2023). Big data in construction project management: The Colombian northeast case. Life-Cycle of Structures and Infrastructure Systems, 1, 3476-3483. https://doi.org/0.1201/9781003323020
Zhang, J. y El-Gohary, N. M. (2017). Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking. Automation in Construction, 73, 45-57. https://doi.org/10.1016/j.autcon.2016.08.027
Zhang, S., Bogus Susan, M., Lippitt, Ch. D., Kamat Vineet, V. y Lee SangHyun. (2022). Implementing Remote-Sensing Methodologies for Construction Research: An Unoccupied Airborne System Perspective. Journal of Construction Engineering and Management, 148(9), 03122005.
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002347
Zhou, Y., Hu, Z. Z. y Zhang, W. Z. (2018). Development and Application of an Industry Foundation Classes-Based Metro Protection Information Model. Mathematical Problems in Engineering, 2018, 1820631. https://doi.org/10.1155/2018/1820631
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Sergio Zabala-Vargas, Maria Jaimes-Quintanilla

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).