Tecnologías 4.0 (IOT y ciencia de datos) orientada a optimizar la gestión de proyectos de construcción

Autores/as

DOI:

https://doi.org/10.31637/epsir-2025-1621

Palabras clave:

gestión de proyectos, ciencia de datos, internet de las cosas, sector construcción, cadena de valor, revisión sistemática, gestión de costos, gestión de tiempos

Resumen

Introducción: Este artículo presenta una investigación con el objetivo de establecer los niveles de apropiación de tecnologías emergentes, principalmente ciencia de datos e Internet de las cosas-IoT, en la gestión de proyectos del sector de la construcción. Metodología: Se llevó a cabo una investigación cuantitativa centrada en una revisión de literatura y el establecimiento del nivel de madurez tecnológica en la gestión de proyectos en Colombia.  Se contó con la participación de 97 empresas.  Resultados: Los resultados muestran alto interés del sector productivo y de la comunidad académica en el uso de las tecnologías relacionadas para la gestión de proyectos, priorizando áreas como costos, calidad, tiempos, alcance y riesgos. La incorporación estrategias innovadoras para la gestión de proyectos son claves para el sector Discusión: Los resultados son consecuentes con una temática de interés incremental en la comunidad académica. Se viene desarrollando ampliamente los conceptos a nivel internacional y se proyecta consolidación en Colombia. Conclusiones: El sector de la construcción Colombia tiene un importante camino en la incorporación de tecnologías emergentes , sin embargo existe el interés y disposición para realizarlo y aplicarlos en sus diferentes ciclos de vida de proyecto.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sergio Zabala-Vargas, Corporación Universitaria Minuto de Dios

Ingeniero Electrónico de la Universidad Industrial de Santander (2005), especialista en Administración de Proyectos de la Universidad del Tolima (2010), Magister en Administración de Proyectos de la UCI de Costa Rica (2014) y Magister en E-learning de la Universidad Autónoma de Bucaramanga (2015). Doctor en Tecnología Educativa de la Universidad de las Islas Baleares- España (2022). Cuenta con 18 años de experiencia en docencia universitaria e investigativa. Es investigador categoría SENIOR de MINCIENCIAS (Colombia). Hace parte del grupo de investigación GICABS de la Corporación Universitaria Minuto de Dios. Su principal interés de investigación es la gestión de proyectos, inteligencia artificial, tecnología educativa y las telecomunicaciones aplicadas.

Maria Jaimes-Quintanilla, Corporación Universitaria Minuto de Dios

Ingeniera Industrial de la Universidad Santo Tomás (2013), Magister en Calidad y gestión integral (2014) de la Universidad Santo Tomás. Cuenta con 10 años de experiencia en docencia universitaria e investigativa. Ha participado como directiva en organizaciones académicas y en el sector inmobiliario. Cuenta con experiencia en procesos productivos e industriales, en el sector avícola. Hace parte del grupo de investigación del programa de Ingeniería Industrial de la Corporación Universitaria Minuto de Dios. Su principal interés de investigación es la gestión de proyectos, inteligencia artificial, tecnología educativa y las telecomunicaciones aplicadas.

Citas

Abdelouahid, R. A., Debauche, O. y Marzak, A. (2021). Internet of Things: A new Interoperable IoT Platform. Application to a Smart Building. The 18th International Conference on Mobile Systems and Pervasive Computing (MobiSPC), The 16th International Conference on Future Networks and Communications (FNC), The 11th International Conference on Sustainable Energy Information Technology, 191, 511-517. https://doi.org/10.1016/j.procs.2021.07.066

Akbari, S., Khanzadi, M., & Gholamian, M. R. (2018). Building a rough sets-based prediction model for classifying large-scale construction projects based on sustainable success index. Engineering, Construction and Architectural Management, 25(4), 534-558. https://doi.org/10.1108/ECAM-05-2016-0110

Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., Akinade, O. O. y Ahmed, A. A. (2020). Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 32, 101827. https://doi.org/10.1016/j.jobe.2020.101827

Arashpour, M., Bai, Y., Aranda-mena, G., Bab-Hadiashar, A., Hosseini, R. y Kalutara, P. (2017). Optimizing decisions in advanced manufacturing of prefabricated products: Theorizing supply chain configurations in off-site construction. Automation in Construction, 84, 146-153. https://doi.org/10.1016/j.autcon.2017.08.032

Arashpour, M., Heidarpour, A., Akbar Nezhad, A., Hosseinifard, Z., Chileshe, N. y Hosseini, R. (2020). Performance-based control of variability and tolerance in off-site manufacture and assembly: Optimization of penalty on poor production quality. Construction Management and Economics, 38(6), 502-514. https://doi.org/10.1080/01446193.2019.1616789

Arroyo, P., Tommelein, I. D., & Ballard, G. (2015). Comparing AHP and CBA as Decision Methods to Resolve the Choosing Problem in Detailed Design. Journal of Construction Engineering and Management, 141(1), 04014063. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000915

Begić, H., & Galić, M. (2021). A Systematic Review of Construction 4.0 in the Context of the BIM 4.0 Premise. Buildings, 11(8), 337.

Bilal, M., Oyedele, L. O., Kusimo, H. O., Owolabi, H. A., Akanbi, L. A., Ajayi, A. O., Akinade, O. O. y Davila Delgado, J. M. (2019). Investigating profitability performance of construction projects using big data: A project analytics approach. Journal of Building Engineering, 26, 100850. https://doi.org/10.1016/j.jobe.2019.100850

Boden, M. A. (2017). Inteligencia artificial. Turner.

Cao, Y., & Ashuri, B. (2020). Predicting the Volatility of Highway Construction Cost Index Using Long Short-Term Memory. Journal of Management in Engineering, 36(4), 04020020. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000784

Chang, W. y Grady, N. (2019, octubre 21). NIST Big Data Interoperability Framework: Volume 1, Definitions. Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.6028/NIST.SP.1500-1r2

Chen, K., Lu, W., Peng, Y., Rowlinson, S. y Huang, G. Q. (2015). Bridging BIM and building: From a literature review to an integrated conceptual framework. International Journal of Project Management, 33(6), 1405-1416. https://doi.org/10.1016/j.ijproman.2015.03.006

Chen, S. (2022). Construction Project Cost Management and Control System Based on Big Data. Mobile Information Systems, 2022, 7908649. https://doi.org/10.1155/2022/7908649

Cheng, M. Y., Cao, M. T. y Herianto, J. G. (2020). Symbiotic organisms search-optimized deep learning technique for mapping construction cash flow considering complexity of project. Chaos, Solitons & Fractals, 138, 109869. https://doi.org/10.1016/j.chaos.2020.109869

Coiduras-Sanagustín, A., Manchado-Pérez, E. y García-Hernández, C. (2024). Understanding perspectives on personal data privacy in Internet of Things (IoT): A Systematic Literature Review (SLR). Heliyon, e30357. https://doi.org/10.1016/j.heliyon.2024.e30357

Cooke, B. yWilliams, P. (2013). Construction planning, programming and control. John Wiley & Sons.

Darko, A., Chan, A. P. C., Adabre, M. A., Edwards, D. J., Hosseini, M. R. y Ameyaw, E. E. (2020). Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities. Automation in Construction, 112, 103081. https://doi.org/10.1016/j.autcon.2020.103081

Departamento Administrativo Nacional de Estadística - DANE. (2022). Indicadores Económicos Alrededor de la Construcción (IEAC). https://www.dane.gov.co/index.php/estadisticas-por-tema/construccion/indicadores-economicos-alrededor-de-la-construccion

Elkateb, S., Métwalli, A., Shendy, A. y Abu-Elanien, A. E. B. (2024). Machine learning and IoT – Based predictive maintenance approach for industrial applications. Alexandria Engineering Journal, 88, 298-309. https://doi.org/10.1016/j.aej.2023.12.065

Fang, L., Mei, B., Jiang, L. y Sun, J. (2020). Investigation of intelligent safety management information system for nuclear power construction projects. En ACM International Conference Proceeding Series (pp. 607-611). https://doi.org/10.1145/3452940.3453058

Feng, N. (2022). The Influence Mechanism of BIM on Green Building Engineering Project Management under the Background of Big Data. Applied Bionics and Biomechanics, 2022, 8227930. https://doi.org/10.1155/2022/8227930

Gupta, D. y Rani, R. (2019). A study of big data evolution and research challenges. Journal of Information Science, 45(3), 322-340. https://doi.org/10.1177/0165551518789880

Haider, M. (2015). Getting started with data science: Making sense of data with analytics. IBM Press.

Huang, Y., Shi, Q., Zuo, J., Pena-Mora, F. y Chen, J. (2021). Research status and challenges of data-driven construction project management in the big data context. Advances in Civil Engineering, 2021, 1-19.

Jiang, Y. y He, X. (2020). Overview of Applications of the Sensor Technologies for Construction Machinery. IEEE Access, 8, 110324-110335. https://doi.org/10.1109/ACCESS.2020.3001968

Katiyar, A. y Kumar, P. (2021). A Review of Internet of Things (IoT) in Construction Industry: Building a Better Future. International Journal of Advanced Science Computing and Engineering, 3(2), 65-72.

Kelleher, J. D. y Tierney, B. (2018). Data science. MIT Press.

Larson, E. y Gray, C. (2014). Project Management: The Managerial Process 6e. McGraw Hill.

Leśniak, A., Górka, M. y Skrzypczak, I. (2021). Barriers to BIM implementation in architecture, construction, and engineering projects—The polish study. Energies, 14(8), 2090.

Lester, A. (2013). Project Management, Planning and Control: Managing Engineering, Construction and Manufacturing Projects to PMI, APM and BSI Standards (p. 24). Elsevier Science.

Li, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z. y Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263, 121458. https://doi.org/10.1016/j.jclepro.2020.121458

Li, W., Duan, P. y Su, J. (2021). The effectiveness of project management construction with data mining and blockchain consensus. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02668-7

Loyola, M. (2018). Big data in building design: A review. J. Inf. Technol. Constr., 23, 259-284.

Mishra, M., Lourenço, P. B. y Ramana, G. V. (2022). Structural health monitoring of civil engineering structures by using the internet of things: A review. Journal of Building Engineering, 48, 103954. https://doi.org/10.1016/j.jobe.2021.103954

Mulcahy, R. (2013). Preparación para el Examen PMP (RMC Public).

Nekouvaght Tak, A., Taghaddos, H., Mousaei, A. y Hermann, U. (Rick). (2020). Evaluating industrial modularization strategies: Local vs. overseas fabrication. Automation in Construction, 114, 103175. https://doi.org/10.1016/j.autcon.2020.103175

Netscher, P. (2014). Successful Construction Project Management: The Practical Guide. Panet Publications.

Oxford Economics. (2021). Future of construction (p. 62). https://resources.oxfordeconomics.com/hubfs/Africa/Future-of-Construction-Full-Report.pdf

Palme, M., Lobato, A. y Carrasco, C. (2016). Quantitative Analysis of Factors Contributing to Urban Heat Island Effect in Cities of Latin-American Pacific Coast. Fourth International Conference on Countermeasures to Urban Heat Island, 30-31 May and 1 June 2016, 169, 199-206. https://doi.org/10.1016/j.proeng.2016.10.024

Parsamehr, M., Perera, U. S., Dodanwala, T. C., Perera, P. y Ruparathna, R. (2023). A review of construction management challenges and BIM-based solutions: Perspectives from the schedule, cost, quality, and safety management. Asian Journal of Civil Engineering, 24(1), 353-389.

Project Management Institute. (2017). Guía de los Fundamentos Para la Dirección de Proyectos (Guía del Pmbok) (6.a ed., p. 589).

Rouhiainen, L. (2018). Inteligencia artificial. Madrid: Alienta Editorial.

Sacks, R., Brilakis, I., Pikas, E., Xie, H. S. y Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering, 1, e14. https://doi.org/10.1017/dce.2020.16

Saka, A. B., Oyedele, L. O., Akanbi, L. A., Ganiyu, S. A., Chan, D. W. M. y Bello, S. A. (2023). Conversational artificial intelligence in the AEC industry: A review of present status, challenges and opportunities. Advanced Engineering Informatics, 55, 101869. https://doi.org/10.1016/j.aei.2022.101869

Salem, T. y Dragomir, M. (2022). Options for and Challenges of Employing Digital Twins in Construction Management. Applied Sciences, 12, 2928. https://doi.org/10.3390/app12062928

Soori, M., Arezoo, B. y Dastres, R. (2023). Internet of things for smart factories in industry 4.0, a review. Internet of Things and Cyber-Physical Systems.

Tang, D. y Liu, K. (2022). Exploring the Application of BIM Technology in the Whole Process of Construction Cost Management with Computational Intelligence. Computational Intelligence and Neuroscience, 2022, 4080879. https://doi.org/10.1155/2022/4080879

Wu, L. y AbouRizk, S. (2023). Towards construction’s digital future: A roadmap for enhancing data value. 225-238.

Xu, J., Lu, W., Ye, M., Webster, C. y Xue, F. (2020). An anatomy of waste generation flows in construction projects using passive bigger data. Waste Management, 106, 162-172. https://doi.org/10.1016/j.wasman.2020.03.024

Xue, F., Wu, L. y Lu, W. (2021). Semantic enrichment of building and city information models: A ten-year review. Advanced Engineering Informatics, 47, 101245. https://doi.org/10.1016/j.aei.2020.101245

You, Z. y Wu, C. (2019). A framework for data-driven informatization of the construction company. Advanced Engineering Informatics, 39, 269-277. https://doi.org/10.1016/j.aei.2019.02.002

Zabala-Vargas, S., Jaimes-Quintanilla, M. y Jimenez-Barrera, M. H. (2023). Big Data, Data Science, and Artificial Intelligence for Project Management in the Architecture, Engineering, and Construction Industry: A Systematic Review. Buildings, 13(12), 2944.

Zabala-Vargas, S., Jiménez-Barrera, M., Vargas-Sanchez, L. y Jaimes-Quintanilla, M. (2023). Big data in construction project management: The Colombian northeast case. Life-Cycle of Structures and Infrastructure Systems, 1, 3476-3483. https://doi.org/0.1201/9781003323020

Zhang, J. y El-Gohary, N. M. (2017). Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking. Automation in Construction, 73, 45-57. https://doi.org/10.1016/j.autcon.2016.08.027

Zhang, S., Bogus Susan, M., Lippitt, Ch. D., Kamat Vineet, V. y Lee SangHyun. (2022). Implementing Remote-Sensing Methodologies for Construction Research: An Unoccupied Airborne System Perspective. Journal of Construction Engineering and Management, 148(9), 03122005.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0002347

Zhou, Y., Hu, Z. Z. y Zhang, W. Z. (2018). Development and Application of an Industry Foundation Classes-Based Metro Protection Information Model. Mathematical Problems in Engineering, 2018, 1820631. https://doi.org/10.1155/2018/1820631

Descargas

Publicado

2025-02-19

Cómo citar

Zabala-Vargas, S., & Jaimes-Quintanilla, M. (2025). Tecnologías 4.0 (IOT y ciencia de datos) orientada a optimizar la gestión de proyectos de construcción . European Public & Social Innovation Review, 10, 1–21. https://doi.org/10.31637/epsir-2025-1621

Número

Sección

Innovación