Aplicación del Modelo Media Varianza con Machine Learning para Optimización de Portafolios de Inversión

Autores/as

DOI:

https://doi.org/10.31637/epsir-2025-1844

Palabras clave:

Portafolio de Inversión, Rentabilidad, Volatilidad, Modelo Media Varianza, Machine Learning, Simulación Montecarlo, Portafolio óptimo, Frontera Eficiente

Resumen

Introducción: La optimización de portafolios de inversión busca encontrar el conjunto óptimo de activos que maximicen la rentabilidad bajo un nivel de riesgo determinado. Este estudio propone el uso del Modelo de Media Varianza (MMV), combinado con la regresión LASSO y la Simulación Monte Carlo, para optimizar un portafolio en el mercado colombiano. Metodología: Se utilizaron datos históricos de acciones y TES del periodo 2015 a 2023. Primero, se aplicó el MMV para identificar portafolios eficientes, luego la regresión LASSO para seleccionar activos clave y, finalmente, la Simulación Monte Carlo para evaluar escenarios y construir carteras óptimas. Resultados: El portafolio óptimo está compuesto por TES (37,65%), Grupo Energía Bogotá (23,35%), Nutresa (20,71%), ISA (10,63%) y Bancolombia (7,67%). La rentabilidad del portafolio óptimo es 0,010123%, y su volatilidad es 0,762192%. Discusión y Conclusiones: El estudio destaca la importancia de combinar técnicas computacionales con modelos clásicos para optimizar portafolios en mercados emergentes. Se concluye que el MMV, junto con Machine Learning y la Simulación Monte Carlo, es adecuado para optimizar portafolios y maximizar los beneficios en un nivel de riesgo determinado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Muharraqi, M. y Messaadia, M. (2023). Implementing Machine Learning in Optimizing Stock Portfolios: A review. 2023 International Conference On Cyber Management And Engineering (CyMaEn), 500-504. https://doi.org/10.1109/CyMaEn57228.2023.10051023 DOI: https://doi.org/10.1109/CyMaEn57228.2023.10051023

Ban, G. Y., Karoui, N. y Lim, A. (2018). Machine Learning and Portfolio Optimization. Manag. Sci., 64, 1136-1154. https://doi.org/10.1287/mnsc.2016.2644 DOI: https://doi.org/10.1287/mnsc.2016.2644

Basuki, B., Sukono, S., Sofyan, D., Madio, S. y Puspitasari, N. (2019). Linear Algebra on investment portfolio optimization model. Journal of Physics: Conference Series, 1402. https://doi.org/10.1088/1742-6596/1402/7/077089 DOI: https://doi.org/10.1088/1742-6596/1402/7/077089

Botero, S. B., García-Mazo, C. M. y Arboleda-Moreno, F. J. (2024). Power generation mix in Colombia including wind power: Markowitz portfolio efficient frontier analysis with machine learning. Journal of Open Innovation: Technology, Market, and Complexity, 10(4). https://doi.org/10.1016/j.joitmc.2024.100402 DOI: https://doi.org/10.1016/j.joitmc.2024.100402

Chang, X. (2022). The application of the Full Markowitz Model in generating optimal investment portfolio. 2022 2nd International Conference on Management Science and Industrial Economy Development (MSIED 2022). https://doi.org/10.23977/msied2022.040

Chen, S. (2022). Research on investment portfolio strategy based on intelligent optimization algorithm. Proceedings of the 11th International Conference on Software and Information Engineering. https://doi.org/10.1145/3571513.3571526 DOI: https://doi.org/10.1145/3571513.3571526

Chen, W., Zhang, H., Mehlawat, M., y Jia, L. (2021). Mean-variance portfolio optimization using machine learning-based stock price prediction. Appl. Soft Comput., 100, 106943. https://doi.org/10.1016/j.asoc.2020.106943 DOI: https://doi.org/10.1016/j.asoc.2020.106943

Chen, Y., Lu, H., Yu, T., Chao, X., Tao, X., Zeng, L., Gorskiy, M., Tarasyuk, Y., Wang, Q., Dong, L., Safitri, I. N., Sudradjat, S., Lesmana, E., N.V., N. A., Hoang, V. T., Alkindi, F., Sadalia, I., Muda, I., Zhang, X., … Soltani, R. (2024). Analysis of Optimal Stock Portfolio Investment on The LQ45 Index Using the Markowitz Model and Single Index Model. BCP Business & Management, 1, 47-58. https://doi.org/10.23977/msied2022.040 DOI: https://doi.org/10.23977/MSIED2022.040

Chen, Z. (2024). Research on Portfolio Optimization Model based on Machine Learning Algorithm in Stock Market. Transactions on Economics, Business and Management Research. https://doi.org/10.62051/sdqv4p21 DOI: https://doi.org/10.62051/sdqv4p21

Feng, Q. (2022). Optimal Portfolio Construction Based on Markowitz Model. BCP Business & Management. https://doi.org/10.54691/bcpbm.v35i.3303 DOI: https://doi.org/10.54691/bcpbm.v35i.3303

García, C. M. y Moreno, J. A. (2011). Optimización de portafolios de pensiones en Colombia: el esquema de multifondos, 2003-2010. Ecos de Economía, 15(33), 139-183.

Grupo Aval. (2024). Renta Fija - Tes. Grupo Aval. https://acortar.link/QO4bi7

Hauck, K. y Woutersen, T. (2024). Explaining Ridge Regression and LASSO (pp. 1-17). Advances in Econometrics. https://acortar.link/BbhR7T

Hu, Y. (2024). Portfolio Optimization Using Machine Learning Method and Monte Carlo Simulation. Highlights in Business, Economics and Management. https://doi.org/10.54097/farx3k44 DOI: https://doi.org/10.54097/farx3k44

Jerončić, M., y Aljinović, Z. (2011). Forming the optimal portfolio based on the markowitz model with diversification of companies by sectors. Ekonomski Pregled, 62(9-10), 583-606. https://acortar.link/4d4qcB

Kaplan, P. D., y Savage, S. (2011). Markowitz 2.0. In Frontiers of Modern Asset allocation (pp. 325-349). https://doi.org/10.1002/9781119205401.ch26 DOI: https://doi.org/10.1002/9781119205401.ch26

Kobets, V. y Savchenko, S. (2022). Building an Optimal Investment Portfolio with Python Machine Learning Tools. Information Technology and Implementation, 307-315. https://ceur-ws.org/Vol-3347/Short_1.pdf

Markowitz, H. (1952). PORTFOLIO SELECTION. The Journal of Finance, 7(1), 77-91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

Martínez-Sánchez, J. F., Cruz-García, S. y López-Castillo, J. I. (2021). Optimización de un portafolio con Python. Pädi Boletín Científico de Ciencias Básicas e Ingenierías Del ICBI, 9(17), 132-135. https://doi.org/10.29057/icbi.v9i17.6807 DOI: https://doi.org/10.29057/icbi.v9i17.6807

Ossa González, G. A. (2023). Comparación de los modelos de Black-Litterman, Markowitz y CAPM en la estimación de los rendimientos esperados en el mercado de renta variable en Colombia. Revista Estrategia Organizacional, 12(2), 29-53. https://doi.org/10.22490/25392786.7230 DOI: https://doi.org/10.22490/25392786.7230

Padhi, D., Padhy, N., Bhoi, A., Shafi, J. y Yesuf, S. H. (2022). An Intelligent Fusion Model with Portfolio Selection and Machine Learning for Stock Market Prediction. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2022/7588303 DOI: https://doi.org/10.1155/2022/7588303

Paiva, F., Cardoso, R., Hanaoka, G. y Duarte, W. (2019). Decision-making for financial trading: A fusion approach of machine learning and portfolio selection. Expert Syst. Appl., 115, 635–655. https://doi.org/10.1016/j.eswa.2018.08.003 DOI: https://doi.org/10.1016/j.eswa.2018.08.003

Rodríguez-Marín, L. V. (2018). SELECCIÓN DE UNA CARTERA DE ACCIONES DEL ÍNDICE COLCAP EN EL CORTO PLAZO; MEDIANTE LA EVALUACIÓN DEL MODELO DE MEDIA- VARIANZA, EL MODELO GRAHAM Y UN FONDO BURSÁTIL DE INVERSIÓN [UNIVERSIDAD CATÓLICA DE PEREIRA].

https://catalogo.ucp.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=561413

Saranya, K. y Prasanna, P. K. (2014). Portfolio Selection and Optimization with Higher Moments: Evidence from the Indian Stock Market. Asia-Pacific Financial Markets, 21(2), 133-149. https://doi.org/10.1007/s10690-014-9180-0 DOI: https://doi.org/10.1007/s10690-014-9180-0

Syahla, R., Susanti, D. y Napitupulu, H. (2024). Optimization of Investment Portfolio Mean-Variance Model Using Genetic Algorithm. International Journal of Business, Economics, and Social Development. https://doi.org/10.46336/ijbesd.v5i2.654 DOI: https://doi.org/10.46336/ijbesd.v5i2.654

Wang, Q. (2023). Optimizing Stock Portfolio using Markowitz Model. BCP Business & Management. https://doi.org/10.54691/bcpbm.v44i.4926 DOI: https://doi.org/10.54691/bcpbm.v44i.4926

Yao, L. (2023). APPLICATION OF THE MARKOWITZ MODEL AND INDEXMODEL IN REAL STOCK MARKETS. Finance & Economics. https://doi.org/10.61173/ypyp5r05 DOI: https://doi.org/10.61173/ypyp5r05

Yilin, Han, R., y Wang, W. (2021). Portfolio optimization with return prediction using deep learning and machine learning. Expert Syst. Appl., 165, 113973. https://doi.org/10.1016/j.eswa.2020.113973 DOI: https://doi.org/10.1016/j.eswa.2020.113973

Zhang, X. (2024). Application and Comparison of Index Model and Markowitz Model in American Stock Market. Highlights in Business, Economics and Management. https://doi.org/10.54097/snr61486 DOI: https://doi.org/10.54097/snr61486

Zhou, S. y Zhang, S. (2023). Portfolio Optimization Analysis in American Industry. BCP Business & Management. https://doi.org/10.54691/bcpbm.v38i.4213 DOI: https://doi.org/10.54691/bcpbm.v38i.4213

Descargas

Publicado

2025-02-26

Cómo citar

García Mazo, C. M. (2025). Aplicación del Modelo Media Varianza con Machine Learning para Optimización de Portafolios de Inversión. European Public & Social Innovation Review, 10, 1–20. https://doi.org/10.31637/epsir-2025-1844

Número

Sección

Miscelánea