Sistemas ciber-físicos en la educación del siglo XXI

Autores/as

DOI:

https://doi.org/10.31637/epsir-2025-636

Palabras clave:

educación, tecnologías, sistemas ciber-físicos, desafíos, aprendizaje, estudiantes, pedagogía, revisión sistemática de la literatura

Resumen

Introducción: Este estudio explora la integración de los sistemas ciber-físicos (CPS) en la educación del siglo XXI. Metodología: Mediante una revisión sistemática de la literatura en las bases de datos WoS y Scopus, se identificaron y analizaron 34 estudios. Resultados: Se evidencia que los CPS, incluyendo tecnologías como la realidad virtual y la robótica, personalizan el aprendizaje y mejoran la evaluación continua, la motivación y las competencias técnicas de los estudiantes. Sin embargo, la implementación enfrenta desafíos, como la necesidad de adaptar programas educativos y diseñar cursos interdisciplinares prácticos. Discusión: A pesar de estos retos, los CPS presentan oportunidades para enriquecer la pedagogía mediante inteligencia artificial y proporcionar un enfoque transversal. Conclusiones: Es necesario continuar investigando la integración de tecnologías emergentes en los CPS y evaluar su impacto en diferentes contextos educativos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Oscar Peña Cáceres, Universidad César Vallejo

Doctor en Tecnologías de la Información y Comunicaciones por la UNP. Becado por el Gobierno Peruano en el año 2022 para realizar estudios de Doctorado en Tecnologías de la Información, Comunicaciones y Computación en la Universitat de València, España. Investigador RENACYT y Docente en la Escuela de Ingeniería de Sistemas de la Universidad César Vallejo, Piura. Lidero un equipo de investigación desde el año 2021.

Henry Silva-Marchan, Universidad Nacional de Tumbes

Egresado del Doctorado en Tecnologías de la Información y Comunicaciones por la UNP. Máster en Big Data por la Universidad Internacional de Andalucía, España. Investigador RENACYT y Docente del Departamento de Matemática Estadística e Informática de la Universidad Nacional de Tumbes, Tumbes. Integrante del equipo de investigación con colegas de la UNP desde el año 2021.

Rudy Espinoza-Nima, Universidad Nacional de Piura

Docente de la Facultad de Ciencias adscrito al departamento académico de Física de la Universidad Nacional de Piura en la categoría de Asociado, con 20 años de experiencia docente universitaria.

Manuel More-More, Universidad Nacional de Piura

Doctor en Ciencias Ambientales por la Universidad Nacional de Piura (UNP). Investigador RENACYT y Docente Principal en la Facultad de Ciencias de la UNP. Ha estudiado en la Universidad Internacional de Andalucía y Sevilla (España), donde realizó su maestría; en la Universidad de las Naciones Unidas - Universidad de los Andes (Colombia). Ha sido Vicepresidente del Consejo Consultivo Científico y Tecnológico de la Región Piura y Jefe de Departamento Académico de Física en la UNP en dos ocasiones.

Citas

Abilawa, A., Rahmawati, A., y Surwanti, A. (2024). Enhancing insight into fintech adoption through VOSViewer: A bibliometric exploration. Multidisciplinary Reviews, 7(1), e2024006. https://doi.org/10.31893/multirev.2024006 DOI: https://doi.org/10.31893/multirev.2024006

Akkaya, I., Derler, P., Emoto, S., y Lee, E. A. (2016). Systems Engineering for Industrial Cyber-Physical Systems Using Aspects. Proceedings of the IEEE, 104(5), 997–1012. https://doi.org/10.1109/JPROC.2015.2512265 DOI: https://doi.org/10.1109/JPROC.2015.2512265

Al-Masri, E. (2018). Integrating Hardware Prototyping Platforms into the Classroom. Proceedings - Frontiers in Education Conference, FIE, 2018, 8659262. https://doi.org/10.1109/FIE.2018.8659262 DOI: https://doi.org/10.1109/FIE.2018.8659262

Andruetto, C., Inam, R., y Torngren, M. (2023). Adding Cyberphysical Systems to the Engineering Education “Pi.” Computer, 56(2), 116–120. https://doi.org/10.1109/MC.2022.3226917 DOI: https://doi.org/10.1109/MC.2022.3226917

Aslanov, R., y Bolshakov, A. (2023). Method for constructing virtual reality simulators for turning and milling for an engineering education system for building cyber-physical systems. En: A. G. Kravets, A. A. Bolshakov, y M. V. Shcherbakov (Eds.) Society 5.0. Studies in Systems, Decision and Control, (Vol. 437, pp. 91–106). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-35875-3_8 DOI: https://doi.org/10.1007/978-3-031-35875-3_8

Bachir, S., Gallon, L., Abenia, A., Aniorte, P., y Exposito, E. (2019). Towards autonomic educational cyber physical systems. Proceedings - 2019 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019, 1198–1204. https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00223 DOI: https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00223

Bećirović, S. (2023). Challenges and Barriers for Effective Integration of Technologies into Teaching and Learning. En Digital Pedagogy. Springer Briefs in Education (pp. 123–133). Springer Science and Business Media B.V. https://doi.org/10.1007/978-981-99-0444-0_10 DOI: https://doi.org/10.1007/978-981-99-0444-0_10

Cardin, O. (2019). Classification of cyber-physical production systems applications: Proposition of an analysis framework. Computers in Industry, 104, 11–21. https://doi.org/10.1016/j.compind.2018.10.002 DOI: https://doi.org/10.1016/j.compind.2018.10.002

Chatterjee, R., Bandyopadhyay, A., Das, N., Chowdhury, S., y Hoque, M. (2024). Cyber-physical systems for enhancing smart and digital learning and education. En M. Kayyali (Ed.), Building Resiliency in Higher Education: Globalization, Digital Skills, and Student Wellness (pp. 128–143). IGI Global.. https://doi.org/10.4018/979-8-3693-5483-4.ch007 DOI: https://doi.org/10.4018/979-8-3693-5483-4.ch007

Chien, T. H., Chen, Y. L., Wu, J. S., Siao, C. Y., Chien, L. R., y Chang, R. G. (2022). An Improved Method for Online Teacher Training Courses for Bilingual Education Based on Cyber-Physical Systems. Applied Sciences, 12(5), 2346. https://doi.org/10.3390/app12052346 DOI: https://doi.org/10.3390/app12052346

Delgado-Algarra, E. J. (2022). Virtual reality, 3D recreations and 3D printing in social sciences education: Creating and interacting with virtual worlds. En Information Resources Management Association (Ed.), Research Anthology on Makerspaces and 3D Printing in Education (pp. 189–208). IGI Global. https://doi.org/10.4018/978-1-6684-6295-9.ch010 DOI: https://doi.org/10.4018/978-1-6684-6295-9.ch010

Dimitrova, M., Krastev, A., Zahariev, R., Vrochidou, E., Bazinas, C., Yaneva, T., y Blagoeva-Hazarbassanova, E. (2020). Robotic Technology for Inclusive Education: A Cyber-Physical System Approach to Pedagogical Rehabilitation. ACM International Conference Proceeding Series, 293–299. https://doi.org/10.1145/3407982.3408019 DOI: https://doi.org/10.1145/3407982.3408019

Diyana, T. N., Haryoto, D., y Sutopo. (2020). Implementation of conceptual problem solving (CPS) in the 5E learning cycle to improve students’ understanding of archimedes principle. AIP Conference Proceedings, 2215, 050002. https://doi.org/10.1063/5.0000738 DOI: https://doi.org/10.1063/5.0000738

Eda, P. S., Purwaningsih, E., y Sutopo, N. (2021). University students’ conceptual understanding of thermodynamics with conceptual problem-solving approach (CPS). AIP Conference Proceedings, 2330, 050015. https://doi.org/10.1063/5.0043273 DOI: https://doi.org/10.1063/5.0043273

El-Hamamsy, L., Bruno, B., Avry, S., Chessel-Lazzarotto, F., Zufferey, J. D., y Mondada, F. (2023). The TACS Model: Understanding Primary School Teachers’ Adoption of Computer Science Pedagogical Content. ACM Transactions on Computing Education, 23(2), 19. https://doi.org/10.1145/3569587 DOI: https://doi.org/10.1145/3569587

Escobar, L., Moyano, C., Aguirre, G., Guerra, G., Allauca, L., y Loza, D. (2020). Multi-robot platform with features of cyber-physical systems for education applications. 2020 IEEE ANDESCON, ANDESCON 2020. https://doi.org/10.1109/ANDESCON50619.2020.9272030 DOI: https://doi.org/10.1109/ANDESCON50619.2020.9272030

Gaggatur, J. S. (2023). Designing and Implementing a Cyber-Physical Systems (CPS) Education Program for Pre-University Students. 2023 IEEE Technology & Engineering Management Conference - Asia Pacific (TEMSCON-ASPAC), 1–6. https://doi.org/10.1109/TEMSCON-ASPAC59527.2023.10531412 DOI: https://doi.org/10.1109/TEMSCON-ASPAC59527.2023.10531412

Garcia, D. A. L., y Roofigari-Esfahan, N. (2020). Technology Requirements for CPS Implementation in Construction. En C. Anumba, N. Roofigari-Esfahan (Eds), Cyber-Physical Systems in the Built Environment (pp. 15–30). Springer International Publishing. https://doi.org/10.1007/978-3-030-41560-0_2 DOI: https://doi.org/10.1007/978-3-030-41560-0_2

Hehenberger, P., Vogel-Heuser, B., Bradley, D., Eynard, B., Tomiyama, T., y Achiche, S. (2016). Design, modelling, simulation and integration of cyber physical systems: Methods and applications. Computers in Industry, 82, 273–289. https://doi.org/10.1016/j.compind.2016.05.006 DOI: https://doi.org/10.1016/j.compind.2016.05.006

Hu, C. C. (2023). Exploring the Impact of CPS-Based Robot-Assisted Teaching in STEM Education: Enhancing Knowledge, Skills, and Attitudes. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447318.2023.2262278 DOI: https://doi.org/10.1080/10447318.2023.2262278

Jung, Y. K., Ropelewski, J., y Gould, S. (2023). WIP-Designing an Educational Cyber-Physical System Based on a Model-Based Approach. Proceedings - Frontiers in Education Conference, FIE, Station. https://doi.org/10.1109/FIE58773.2023.10343193 DOI: https://doi.org/10.1109/FIE58773.2023.10343193

Kaynak, O. (2024). Evolution of cyber physical systems towards industrial metaverse. En R. A. Aliev, N. R. Yusupbekov, J. Kacprzyk, W. Pedrycz, M. B. Babanli, F. M. Sadikoglu y S. M. Turabdjanov (Eds.), 12th World Conference “Intelligent System for Industrial Automation” (WCIS-2022). WCIS 2022. Lecture Notes in Networks and Systems, (vol 718, p. 2). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-51521-7_2 DOI: https://doi.org/10.1007/978-3-031-51521-7_2

Kokol, P. (2023). Discrepancies among Scopus and Web of Science, coverage of funding information in medical journal articles: a follow-up study. Journal of the Medical Library Association, 111(3), 703–709. https://doi.org/10.5195/jmla.2023.1513 DOI: https://doi.org/10.5195/jmla.2023.1513

Komninos, T., Paraskevas, M., Smyrnaiou, Z., y Serpanos, D. (2022). Cyberphysical Systems in K-12 Education. Computer, 55(5), 81–84. https://doi.org/10.1109/MC.2022.3158165 DOI: https://doi.org/10.1109/MC.2022.3158165

Kuo, M. M. Y., Sinha, R., Lewis, R., Cumming, C., Alarcon, R., y Sharma, C. (2023). DIY Wind Turbines: A Low-Cost Smart ICPS for Educational Research. 2023 IEEE International Conference on Teaching, Assessment and Learning for Engineering, TALE 2023 - Conference Proceedings, Auckland. https://doi.org/10.1109/TALE56641.2023.10398414 DOI: https://doi.org/10.1109/TALE56641.2023.10398414

Lin, M. F., Li, M. C., Chen, C. M., y Tu, C. C. (2023). A Cyber-Physical Mixed Reality System to Facilitate Chemical Laboratory Safety Education. Proceedings - 2023 14th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2023, 168–173. https://doi.org/10.1109/IIAI-AAI59060.2023.00043 DOI: https://doi.org/10.1109/IIAI-AAI59060.2023.00043

Lytridis, C., Bazinas, C., Kaburlasos, V. G., Vassileva-Aleksandrova, V., Youssfi, M., Mestari, M., Ferelis, V., y Jaki, A. (2019). Social robots as cyber-physical actors in entertainment and education. 2019 27th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2019. https://doi.org/10.23919/SOFTCOM.2019.8903630 DOI: https://doi.org/10.23919/SOFTCOM.2019.8903630

Makio, E., Yablochnikov, E., Colombo, A. W., Makio, J., y Harrison, R. (2020). Applying Task-centric Holistic Teaching Approach in Education of Industrial Cyber Physical Systems. Proceedings - 2020 IEEE Conference on Industrial Cyberphysical Systems, ICPS 2020, 359–364. https://doi.org/10.1109/ICPS48405.2020.9274773 DOI: https://doi.org/10.1109/ICPS48405.2020.9274773

Marwedel, P., Mitra, T., Grimheden, M. E., y Andrade, H. A. (2020). Survey on Education for Cyber-Physical Systems. IEEE Design and Test, 37(6), 56–70. https://doi.org/10.1109/MDAT.2020.3009613 DOI: https://doi.org/10.1109/MDAT.2020.3009613

Monostori, L. (2014). Cyber-physical Production Systems: Roots, Expectations and R&D Challenges. Procedia CIRP, 17, 9–13. https://doi.org/10.1016/j.procir.2014.03.115 DOI: https://doi.org/10.1016/j.procir.2014.03.115

Pasricha, S. (2022). Embedded Systems Education in the 2020s: Challenges, Reflections, and Future Directions. Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI, 519–524. https://doi.org/10.1145/3526241.3530348 DOI: https://doi.org/10.1145/3526241.3530348

Peter, S., Momtaz, F., y Givargis, T. (2015). From the browser to the remote physical lab: Programming cyber-physical systems. Proceedings - Frontiers in Education Conference, FIE, 2015, 7344228. https://doi.org/10.1109/FIE.2015.7344228 DOI: https://doi.org/10.1109/FIE.2015.7344228

Pozzi, M., Radhakrishnan, U., Rojo Agustí, A., Koumaditis, K., Chinello, F., Moreno, J. C., y Malvezzi, M. (2021). Exploiting VR and AR technologies in education and training to inclusive robotics. Studies in Computational Intelligence, 982, 115–126. https://doi.org/10.1007/978-3-030-77022-8_11 DOI: https://doi.org/10.1007/978-3-030-77022-8_11

Priya, C. S. (2022). Bridging the skills gap in technical education. En Contemporary ELT Strategies in Engineering Pedagogy: Theory and Practice (pp. 41–60). Taylor and Francis. https://doi.org/10.4324/9781003268529-5 DOI: https://doi.org/10.4324/9781003268529-5

Rahmawaty, R., Irwan, y Asmar, A. (2023). Validity of based learning devices creative problem solving (CPS) to improve mathematics problem solving ability for class VIII students. AIP Conference Proceedings, 2698, 060034. https://doi.org/10.1063/5.0123086 DOI: https://doi.org/10.1063/5.0123086

Robayo, F., Román, M., Morales, F., Jerez, D., y Plasencia, R. (2023). Cyber-physical systems in education: a new approach to continuous improvement and agile learning. Communications in Computer and Information Science, 1755, 520–531. https://doi.org/10.1007/978-3-031-24985-3_38 DOI: https://doi.org/10.1007/978-3-031-24985-3_38

Romero, D., Bernus, P., Noran, O., Stahre, J., y Berglund, Å. F. (2016). The operator 4.0: Human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. I. Nääs, O. Vendrametto, J. Mendes Reis, R. Franco Gonçalves, M. Terra Silva, G. von Cieminski, D. Kiritsis (Eds.) IFIP Advances in Information and Communication Technology (Vol. 488, pp. 677–686). Springer New York LLC. https://doi.org/10.1007/978-3-319-51133-7_80 DOI: https://doi.org/10.1007/978-3-319-51133-7_80

Schranz, M., Di Caro, G. A., Schmickl, T., Elmenreich, W., Arvin, F., Şekercioğlu, A., y Sende, M. (2021). Swarm Intelligence and cyber-physical systems: Concepts, challenges and future trends. Swarm and Evolutionary Computation, 60. https://doi.org/10.1016/j.swevo.2020.100762 DOI: https://doi.org/10.1016/j.swevo.2020.100762

Seshia, S. A. (2022). Explorations in CPS education and related research projects over the past two decades unveil where CPS learning is headed. Communications of the ACM, 65(5), 60–69. https://doi.org/10.1145/3490442 DOI: https://doi.org/10.1145/3490442

Sharonova, S., y Avdeeva, E. (2024). Smart Education: Social Risks and Challenges. En S. Papadakis (Ed.), IoT, AI, and ICT for Educational Applications, (pp. 99–118). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-50139-5_5 DOI: https://doi.org/10.1007/978-3-031-50139-5_5

Singh, K. D., y Sood, S. K. (2020). Optical fog-assisted cyber-physical system for intelligent surveillance in the education system. Computer Applications in Engineering Education, 28(3), 692–704. https://doi.org/10.1002/cae.22240 DOI: https://doi.org/10.1002/cae.22240

Singsri, P., Kosiyanurak, K., Thongtan, W., Panya-Isara, C., Suwannatat, T., y Phiromlap, S. (2023). Cyber Physical System of Robotics Training Set in Rajamangala University of Technology Tawan-ok Education and Training for Automation 4.0 in Thailand Smart Laboratory. 7th International Conference on Information Technology, InCIT 2023, 1–5. https://doi.org/10.1109/InCIT60207.2023.10412858 DOI: https://doi.org/10.1109/InCIT60207.2023.10412858

Törngren, M., y Herzog, E. (2016). Towards integration of CPS and systems engineering in education. 2016 Workshop on Embedded and Cyber-Physical Systems Education, WESE 2016 - Organized as a Part of Embedded Systems Week, Proceedings, 2016. https://doi.org/10.1145/3005329.3005335 DOI: https://doi.org/10.1145/3005329.3005335

Ueter, N., Chen, K. H., y Chen, J. J. (2020). Project-Based CPS Education: A Case Study of an Autonomous Driving Student Project. IEEE Design and Test, 37(6), 39–46. https://doi.org/10.1109/MDAT.2020.3012085 DOI: https://doi.org/10.1109/MDAT.2020.3012085

Wang, F. Y., Tang, Y., Liu, X., y Yuan, Y. (2019). Social Education: Opportunities and Challenges in Cyber-Physical-Social Space. IEEE Transactions on Computational Social Systems, 6(2), 191–196. https://doi.org/10.1109/TCSS.2019.2905941 DOI: https://doi.org/10.1109/TCSS.2019.2905941

Yu, Z., Gao, H., Cong, X., Wu, N., y Song, H. H. (2023). A Survey on Cyber-Physical Systems Security. IEEE Internet of Things Journal, 10(24), 21670–21686. https://doi.org/10.1109/JIOT.2023.3289625 DOI: https://doi.org/10.1109/JIOT.2023.3289625

Descargas

Publicado

2024-11-08

Cómo citar

Peña Cáceres, O., Silva-Marchan, H., Espinoza-Nima, R., & More-More, M. (2024). Sistemas ciber-físicos en la educación del siglo XXI. European Public & Social Innovation Review, 10, 1–19. https://doi.org/10.31637/epsir-2025-636

Número

Sección

Innovación