Usando robots sociales como tecnología educativa inclusiva para el aprendizaje de matemáticas a través de la narración
DOI:
https://doi.org/10.31637/epsir-2024-672Palabras clave:
educación matemática inclusiva, diseño universal para el aprendizaje, robots sociales, robótica educativa, narrativa, interacción humano-robot, inteligencia artificial, educación digitalResumen
Introducción: Este estudio exploratorio investiga las potencialidades de los robots sociales como tecnología educativa inclusiva para mejorar el aprendizaje de las matemáticas. Metodología: Más concretamente, investigamos la eficacia del robot social Pepper para involucrar a los estudiantes en actividades didácticas inclusivas a través de la narración y proporcionándoles un feedback inmediato, personalizado y emocional. Nos centramos en la integración de la inteligencia artificial (IA) innovadora con los principios del UDL. La muestra de la investigación consistió en cinco estudiantes que participaron con Pepper en sesiones inclusivas de matemáticas. Resultados: Nuestros resultados sugieren que el uso de Pepper aumenta significativamente el compromiso de los estudiantes al proporcionarles apoyo personalizado. Discusión: La capacidad del robot para la interacción dinámica y empática con los estudiantes crea un entorno de aprendizaje más estimulante y alentador. Conclusiones: Este estudio muestra el potencial de los robots sociales en la educación inclusiva, especialmente cuando se trata de permitir experiencias de aprendizaje a medida para los estudiantes de educación matemática que se adapten a sus diversas necesidades. Los resultados de este estudio deben ser validados mediante futuras investigaciones que incluyan a más participantes durante un largo periodo de tiempo.
Descargas
Citas
Aflalo, E. (2014). The invisible barrier to integrating computer technology in education. Journal of Education and Learning, 3(2), 120-134. https://doi.org/10.5539/jel.v3n2p120 DOI: https://doi.org/10.5539/jel.v3n2p120
Baker, T., Smith, L., & Anissa, N. (2019). Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges. Retrieved from Nesta Foundation. https://lc.cx/Pe5vxe
Barak, M., & Zadok, Y. (2009). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education, 19(3), 289-307. https://doi.org/10.1007/s10798-007-9043-3 DOI: https://doi.org/10.1007/s10798-007-9043-3
Barana, A., Fissore, C., & Marchisio, M., (2020). From Standardized Assessment to Automatic Formative Assessment for Adaptive Teaching, in Proceedings of the 12th International Conference on Computer Supported Education, 1, 285-296. https://doi.org/10.5220/0009577302850296 DOI: https://doi.org/10.5220/0009577302850296
Bayne, S. (2015). Teacherbot: Interventions in automated teaching. Teaching in Higher Education, 20(4), 455-467. https://doi.org/10.1080/13562517.2015.1020783 DOI: https://doi.org/10.1080/13562517.2015.1020783
Belpaeme, T., James, K., Aditi, R., Brian, S., & Fumihide, T. (2018). Social robots for education: A review. Science Robotics, 3(21). https://doi.org/10.1126/scirobotics.aat5954 DOI: https://doi.org/10.1126/scirobotics.aat5954
Bingham, A. J., Pane, J. F., Steiner, E. D., & Hamilton, L. S. (2018). Ahead of the Curve: Implementation Challenges in Personalized Learning School Models. Educational Policy, 32, 454-489. https://doi.org/10.1177/0895904816637688 DOI: https://doi.org/10.1177/0895904816637688
Brignone, S., Grimaldi, R., & Palmieri, S. (2021). Da ITS to ITR. I Social robot come sistemi intelligenti di tutoraggio e comunicazione. Mondo Digitale, 20(92), 1-13.
Brown, L. N., & Howard, A. M. (2014). The positive effects of verbal encouragement in mathematics education using a social robot. IEEE Integrated STEM Education Conference, Princeton University, NJ, USA. https://doi.org/10.1109/ISECon.2014.6891009 DOI: https://doi.org/10.1109/ISECon.2014.6891009
Bruner, J. (1986). Actual Minds, Possible Worlds. Cambridge: Harvard University Press. DOI: https://doi.org/10.4159/9780674029019
CAST (2011). Universal Design for Learning Guidelines version 2.0. Wakefield, MA
Cottini, L. (2019). Universal Design For Learning e Curriculo Inclusivo. Giunti EDU.
Cui, L., & Li, J. (2019). Study on Data Fields Grading Category Labeling for ERP Practical Skills Intelligent Assessment System. DEStech Transactions on Computer Science and Engineering. https://doi.org/10.12783/dtcse/ica2019/30737 DOI: https://doi.org/10.12783/dtcse/ica2019/30737
Delgado, A., Wardlow, L., O'Malley, K., & McKnight, K. (2015). Educational technology: A review of the integration, resources, and effectiveness of technology in K-12 classrooms. Journal of Information Technology Education: Research, 14, 397–416. https://lc.cx/kcDdYz DOI: https://doi.org/10.28945/2298
Dimock, K. V., & Boethel, M. (1999). Constructing Knowledge with Technology. Southwest Educational Development Lab. https://eric.ed.gov/?%20id=ED431398
Dishon, G. (2017). New data, old tensions: Big data, personalized learning, and the challenges of progressive education. Theory and Research in Education, 15(3), 272-289. https://doi.org/10.1177/1477878517735233 DOI: https://doi.org/10.1177/1477878517735233
García-Martínez, I., Fernández-Batanero, J., Fernández-Cerero, J., & León, S. (2023). Analysing the Impact of Artificial Intelligence and Computational Sciences on Student Performance: Systematic Review and Meta-analysis. Journal of New Approaches in Educational Research, 12(1), 171-197. https://doi.org/10.7821/naer.2023.1.1240 DOI: https://doi.org/10.7821/naer.2023.1.1240
Hall, G. E. (2010). Technology’s Achilles heel: Achieving high-quality implementation. Journal of Research on Technology in Education, 42(3), 231-253. https://doi.org/10.1080/15391523.2010.10782550 DOI: https://doi.org/10.1080/15391523.2010.10782550
Holmes, W., Fadel, C., & Bialik, M. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. The Center for Curriculum Redesign. http://hdl.handle.net/20.500.12424/4276068
Holstein, K., McLaren, B. M., & Aleven, V. (2017). Intelligent tutors as teachers’ aides: Exploring teacher needs for real-time analytics in blended classrooms. ACM International Conference Proceeding Series. 257-266. https://doi.org/10.1145/3027385.3027451 DOI: https://doi.org/10.1145/3027385.3027451
Hannula, M. S. (2020). Affect in Mathematics Education. In S. Lerman (Ed.) Encyclopedia of Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-15789-0_174 DOI: https://doi.org/10.1007/978-3-030-15789-0_174
Harper, B., & Milman, N. B. (2016). One-to-one technology in K-12 class- rooms: A review of the literature from 2004 through 2014. Journal of Research on Technology in Education, 48(2), 129–142. https://doi.org/10.1080/15391523.2016.1146564 DOI: https://doi.org/10.1080/15391523.2016.1146564
Huang, J., Saleh, S., & Liu Y. (2021). A Review on Artificial Intelligence in Education. Academic Journal of Interdisciplinary Studies, 10(3), 206. https://doi.org/10.36941/ajis-2021-0077 DOI: https://doi.org/10.36941/ajis-2021-0077
Ho Shing Ip, H., Li, Ch., Leoni, S., Chen, Y., Ma, K. F., Hoi-to Wong, C., & Li, Q. (2019). Design and Evaluate Immersive Learning Experience for Massive Open Online Courses (MOOCs). IEEE Transactions on Learning Technologies, 4(12), 503-515. http://doi.org/10.1109/TLT.2018.2878700 DOI: https://doi.org/10.1109/TLT.2018.2878700
Jawaid, I., Javed, M. Y., Jaffery, M. H., Akram, A., Safder, U., & Hassan, S. (2020). Robotic system education for young children by collaborative-project-based learning. Computer Applications in Engineering Education, 28(1), 178-192. http://doi.org/10.1002/cae.22184 DOI: https://doi.org/10.1002/cae.22184
Jee, C. (2019). Best chatbot building platforms. Techworld. In Jiménez, E., Bravo, E., & Bacca, E. (2010). Tool for experimenting with concepts of mobile robotics as applied to children’s education. IEEE Transactions on Education, 53(1), 88–95. https://doi.org/10.1109/TE.2009.2024689 DOI: https://doi.org/10.1109/TE.2009.2024689
Lehmann, H., & Svarny, P. (2021). Using a social robot for different types of feedback during university lectures. Scienze e Società dell’Educazione, 2, 282-295. http://hdl.handle.net/10446/2158801 DOI: https://doi.org/10.3280/ess2-2021oa12485
Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence Unleashed: Arguments for Artificial Intelligence in Education. Pearson.
Moore, S. L. (2007). [Review of Teaching Every Student in the Digital Age: Universal Design for Learning, by D. H. Rose & A. Meyer]. Educational Technology Research and Development, 55(5), 521-525. http://www.jstor.org/stable/30220506 DOI: https://doi.org/10.1007/s11423-007-9056-3
Moreno, R. D. (2019). The arrival of artificial intelligence to education. RITI Journal, 7(14), 260-270. https://doi.org/10.36825/RITI.07.14.022 DOI: https://doi.org/10.36825/RITI.07.14.022
Petti, L., Dello Iacono, U., & Vivarelli, A. (in press). Designing inclusive mathematics story-problems using artificial intelligence: a study involving prospective support teachers. Proceedings of Italian Symposium on Digital Education (Isyde) 2024, University of Pavia.
Pham, S. T., & Sampson, P. M. (2022). The development of artificial intelligence in education: A review in context. Journal of Computer Assisted Learning, 38(5), 1408-1421. https://doi.org/10.1111/jcal.12687 DOI: https://doi.org/10.1111/jcal.12687
Puttick, G., Drayton, B., & Karp, J. (2015). Digital curriculum in the classroom: Authority, control, and teacher role. International Journal of Emerging Technologies in Learning, 10(6), 11–20. https://doi.org/10. 3991/ijet.v10i6.4825 DOI: https://doi.org/10.3991/ijet.v10i6.4825
Reister, M., & Blanchard, S. B. (2020). Tips and Tools for Implementing Progress Monitoring. Kappa Delta Pi Record, 56(3), 128-134. https://doi.org/10.1080/00228958.2020.1770006 DOI: https://doi.org/10.1080/00228958.2020.1770006
Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., & Dimitrova, V. (Eds.). (2021). Artificial Intelligence in Education: 22nd International Conference, AIED 2021, Utrecht, The Netherlands, Proceedings, Part I. Springer International Publishing. https://acortar.link/DDRBXZ DOI: https://doi.org/10.1007/978-3-030-78270-2
Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26(2), 582-599. https://doi.org/10.1007/s40593-016-0110-3 DOI: https://doi.org/10.1007/s40593-016-0110-3
Schachner, T., Keller, R., & Wangenheim, F. V. (2020). Artificial intelligence-based conversational agents for chronic conditions: systematic literature review. Journal of Medical Internet Research, 22(9). https://doi.org/10.2196/20701 DOI: https://doi.org/10.2196/20701
Singer-Brodowski, M., Brock, A., Etzkorn, N., y Otte, I. (2019). Seguimiento de la educación para el desarrollo sostenible en Alemania: perspectivas de la educación infantil, escolar y superior [Monitoring of education for sustainable development in Germany-insights from early childhood education, school and higher education]. Environmental Education Research, 25(4), 492-507. https://doi.org/10.1080/ 13504622.2018.1440380 DOI: https://doi.org/10.1080/13504622.2018.1440380
Tsai, S. C., Chen, C. H., Shiao, Y. T., Ciou, J. S., & Wu, T. N. (2020). Precision education with statistical learning and deep learning: a case study in Taiwan. International Journal of Educational Technology in Higher Education, 17(1), 1-13. https://lc.cx/1w4t7U DOI: https://doi.org/10.1186/s41239-020-00186-2
William, D. (2007). Keeping learning on track: classroom assessment and the regulation of learning. In F. K. Jr Lester (Ed.) Second Handbook of Research on Mathematics Teaching and Learning, (pp. 1053-1098), Information Age Publishing, Charlotte.
Woolf, B. P. (2015). AI and education: Celebrating 30 years of marriage. In C. Conati, N. Heffernan, A. Mitrovic, & M. F. Verdejo (Eds.), Artificial Intelligence in Education: 17th International Conference, AIED 2015, Madrid, Spain, June 22–26, 2015. Proceedings, (pp. 38-47). Springer International Publishing. https://doi.org/10.1007/978-3-319-19773-9 DOI: https://doi.org/10.1007/978-3-319-19773-9
Woolf, B. P., Lane, H. C., Chaudhri, V. K., & Kolodner, J. L. (2013). AI grand challenges for education, AI Magazine, 34(4), 66-84. https://doi.org/ 10.1609/aimag.v34i4.2490 DOI: https://doi.org/10.1609/aimag.v34i4.2490
Zan, R. (2012). La dimensione narrativa di un problema: il modello C&D per l’analisi e la (ri)formulazione del testo, Parte I e parte II. L’insegnamento della Matematica e delle Scienze Integrate, 35(2), 107-126
Zazkis, R., & Liljedahl, P. (2019). Teaching Mathematics as Storytelling. Brill.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Antonio Vitale (Autor de Correspondencia); Umberto Dello Iacono
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).