Aplicación de Modelos de Inteligencia Artificial en Pruebas Estandarizadas para la Optimización del Rendimiento Académico en Educación Superior

Autores/as

DOI:

https://doi.org/10.31637/epsir-2024-1605

Palabras clave:

Inteligencia Artificial, rendimiento escolar, prueba de conocimiento, educación superior, aprendizaje, calidad de la educación, revisión, evaluación

Resumen

Introducción:  Aunque, la IA ha demostrado potencial para predecir resultados académicos, diseñar programas de aprendizaje personalizados y apoyar la orientación académica, se encuentran desafíos significativos como la necesidad de datos de alta calidad, problemas de interpretabilidad de algunos modelos y el riesgo de perpetuar sesgos existentes. El objetivo de la presente revisión sistemática es explorar el uso de la inteligencia artificial en el ámbito educativo, específicamente en el contexto de las pruebas estandarizadas. Metodología: Para ello, se lleva a cabo una revisión exhaustiva de la literatura científica siguiendo las directrices de la declaración PRISMA, con una muestra de 17 artículos publicados entre el 2019 y 2023 en revistas indexadas en Scopus. Resultados: Se encontró que los modelos predictivos más utilizados en los estudios fueron: Redes Neuronales Artificiales, Árboles de Decisión, Máquinas de Soporte Vectorial (SVM) y Random Forest, Discusión: identificando beneficios que incluyen la optimización del rendimiento académico, individualización del aprendizaje y mejora en la toma de decisiones educativas. Conclusiones: Se concluye que la IA tiene un gran potencial para mejorar la medición de la calidad educativa, pero es crucial abordar estas limitaciones y consideraciones éticas para garantizar su aplicación efectiva y responsable en el ámbito educativo.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Nathalia Orozco Morales, Corporación Universitaria Minuto de Dios

Docente investigadora en la especialización en inteligencia artificial de la Corporación Universitaria Minuto de Dios. Magister en Inteligencia Artificial y profesional en Ingeniería Física, con experiencia en la integración de tecnologías avanzadas y métodos científicos en proyectos educativos e investigativos.

Pavel Andrei Osorio García, Corporación Universitaria Minuto de Dios

Estudiante de la especialización en inteligencia Artificial de la Corporación Universitaria Minuto de Dios, Especialista en Sistemas de la Universidad Nacional de Colombia. Programador Senior Full Stack, con amplia experiencia en el desarrollo de soluciones educativas.

Citas

Alhazmi, E. y Sheneamer, A. (2023). Early predicting of students performance in higher education. IEEE Access, 11, 27579-27589. https://doi.org/10.1109/ACCESS.2023.3250702 DOI: https://doi.org/10.1109/ACCESS.2023.3250702

Assiri, B., Bashraheel, M. y Alsuri, A. (2022). Improve the accuracy of students admission at universities using machine learning techniques. En Proceedings of the 2022 7th International Conference on Data Science and Machine Learning Applications (CDMA), 127-132. https://doi.org/10.1109/CDMA54072.2022.00026 DOI: https://doi.org/10.1109/CDMA54072.2022.00026

Bonaccorso, G. (2018). Machine learning algorithms: Popular algorithms for data science and machine learning (2nd ed.). Packt Publishing. https://bit.ly/3VNOg5L

Bonaccorso, G. (2018). Mastering Machine Learning Algorithms: Expert Techniques to Implement Popular Machine Learning Algorithms and Fine-Tune Your Models. Packt Publishing. https://bit.ly/4bElf2o

Chen, X., Peng, Y., Gao, Y. y Cai, S. (2022). A competition model for prediction of admission scores of colleges and universities in Chinese college entrance examination. PLOS ONE, 17(10). https://doi.org/10.1371/journal.pone.0274221 DOI: https://doi.org/10.1371/journal.pone.0274221

Cunningham, J., Mukhopadhyay, R., Jain, R. R. K., Matayoshi, J., Cosyn, E. y Uzun, H. (2021). Pre-course prediction of at-risk calculus students. En I. Roll, et al. (Eds.), Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science, 12749, 124-128. Springer. https://doi.org/10.1007/978-3-030-78270-2_22 DOI: https://doi.org/10.1007/978-3-030-78270-2_22

Das, A. K. y Rodríguez-Marek, E. (2019). A predictive analytics system for forecasting student academic performance: Insights from a pilot project at Eastern Washington University. En 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), 1-6. IEEE. https://doi.org/10.1109/ICIEV.2019.8858523 DOI: https://doi.org/10.1109/ICIEV.2019.8858523

Das, S. y Cakmak, U. M. (2018). Hands-On Automated Machine Learning: A Beginner's Guide to Building Automated Machine Learning Systems Using AutoML and Python. Packt Publishing. https://bit.ly/3zolwZC

De Castro Rodríguez, D., Días de Lima, M., da Conceição, M. D., de Siqueira, V. S. y Barbosa, R. M. (2019). A data mining approach applied to the High School National Examination: Analysis of aspects of candidates to Brazilian universities. En P. Moura Oliveira et al. (Eds.), Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science, 11804, 3-14. Springer. https://doi.org/10.1007/978-3-030-30241-2_1 DOI: https://doi.org/10.1007/978-3-030-30241-2_1

Delahoz-Domínguez, E. J., Guillen-Ibarra, S. y Fontalvo-Herrera, T. (2020). Análisis de la acreditación de calidad en programas de ingeniería industrial y los resultados en las pruebas nacionales estandarizadas, en Colombia. Formación Universitaria, 13(1), 127-134. https://doi.org/10.4067/s0718-50062020000100127 DOI: https://doi.org/10.4067/S0718-50062020000100127

Elsevier. (n.d.). Scopus data. Elsevier. https://www.elsevier.com/products/scopus/data

Fateh Allah, A. G. (2020). Using machine learning to support students’ academic decisions. Journal of Theoretical and Applied Information Technology, 98(18), 3778-3795. https://www.jatit.org/volumes/Vol98No18/11Vol98No18.pdf

Gao, Z., Gatpandan, M. P. y Gatpandan, P. H. (2021). Classification decision tree algorithm in predicting students’ course preference. In 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), 93-97.

https://doi.org/10.1109/ISCEIC53685.2021.00026 DOI: https://doi.org/10.1109/ISCEIC53685.2021.00026

García Cruz, J. A., García Díaz, B. L., Guevara Valdiviezo, Y., Ortega Rojas, Y. K., Sakibaru Mauricio, L. A. y Vargas Cárdenas, C. A. (2023). Inteligencia artificial en la praxis docente: vínculo entre la tecnología y el proceso de aprendizaje. Josefrank Pernalete Lugo. https://doi.org/10.17613/vqt1-cp64

Guevara-Flores, K.-F., Hernandez-Calderon, J.-G. y Soto-Mendoza, V. (2023). Enhancing English proficiency test evaluation: Leveraging artificial intelligence for result classification. En 2023 10th International Conference on Soft Computing & Machine Intelligence, 183-187. https://doi.org/10.1109/ISCMI59957.2023.10458530 DOI: https://doi.org/10.1109/ISCMI59957.2023.10458530

Liu, Q., Wang, X., Huang, X. y Yin, X. (2020). Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data. Tunnelling and Underground Space Technology, 106, 103595. https://doi.org/10.1016/j.tust.2020.103595 DOI: https://doi.org/10.1016/j.tust.2020.103595

Martinez Neda, B. y Gago-Masague, S. (2022). Feasibility of machine learning support for holistic review of undergraduate applications. Proceedings of the 2022 International Conference on Applied Artificial Intelligence (ICAPAI), 1-6. https://doi.org/10.1109/ICAPAI55158.2022.9801571 DOI: https://doi.org/10.1109/ICAPAI55158.2022.9801571

Mengash, H. A. (2020). Using data mining techniques to predict student performance to support decision making in university admission systems. IEEE Access, 8, 55462-55470. https://doi.org/10.1109/ACCESS.2020.2981905 DOI: https://doi.org/10.1109/ACCESS.2020.2981905

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D. y Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372(71). https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71

Pastora Alejo, B. y Fuentes Aparicio, A. (2021). La planificación de estrategias de enseñanza en un entorno virtual de aprendizaje. Revista Científica UISRAEL, 8(1), 59-76. https://doi.org/10.35290/rcui.v8n1.2021.341 DOI: https://doi.org/10.35290/rcui.v8n1.2021.341

Pentel, A. y Kaiva, L.-L. (2020). Predicting students’ state examination results based on previous grades and demographics. En 2020 11th International Conference on Information, Intelligence, Systems and Applications, 1-6. https://doi.org/10.1109/IISA50023.2020.9284401 DOI: https://doi.org/10.1109/IISA50023.2020.9284401

Qahmash, A., Ahmad, N. y Algarni, A. (2023). Investigating students’ pre-university admission requirements and their correlation with academic performance for medical students: An educational data mining approach. Brain Sciences, 13(3) https://doi.org/10.3390/brainsci13030456 DOI: https://doi.org/10.3390/brainsci13030456

Restrepo Gómez, B. (2013). Fundamentos teóricos de la evaluación por competencias: trazabilidad histórica del concepto. Uni-pluri/versidad, 13(2), 14-23. http://bit.ly/4cRKFKV

Rudd, G., Meissel, K. y Meyer, F. (2021). Measuring academic resilience in quantitative research: A systematic review of the literature. Educational Research Review, 34. https://doi.org/10.1016/j.edurev.2021.100402 DOI: https://doi.org/10.1016/j.edurev.2021.100402

Sanabria James, L. A., Pérez Almagro, M. C. y Riascos Hinestroza, L. E. (2020). Pruebas de evaluación Saber y PISA en la Educación Obligatoria de Colombia. Educatio Siglo XXI, 38(3), 231-254. https://doi.org/10.6018/educatio.452891 DOI: https://doi.org/10.6018/educatio.452891

Shea, B. J., Reeves, B. C., Wells, G., Thuku, M., Hamel, C., Moran, J. y Moher, D. (2017). AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ, 358. https://doi.org/10.1136/bmj.j4008 DOI: https://doi.org/10.1136/bmj.j4008

Song, Z. y Ke, K. (2023). Prediction for CET-4 based on random forest. Procedia Computer Science, 228, 429-437. https://doi.org/10.1016/j.procs.2023.11.049 DOI: https://doi.org/10.1016/j.procs.2023.11.049

Soto-Acevedo, M., Abuchar-Curi, A. M., Zuluaga-Ortiz, R. A. y Delahoz-Domínguez, E. J. (2023). A machine learning model to predict standardized tests in engineering programs in Colombia. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 18(3), 211-218. https://doi.org/10.1109/RITA.2023.3301396 DOI: https://doi.org/10.1109/RITA.2023.3301396

Sterne, J. A., Hernán, M. A., Reeves, B. C., Savovic, J., Berkman, N. D., Viswanathan, M. y Moher, D. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ, 355, https://doi.org/10.1136/bmj.i4919 DOI: https://doi.org/10.1136/bmj.i4919

Suvon, M. N. I., Siam, S. C., Ferdous, M., Alam, M. y Khan, R. (2022). Masters and doctor of philosophy admission prediction of Bangladeshi students into different classes of universities. IAES International Journal of Artificial Intelligence (IJ-AI), 11(4), 1545-1553. https://doi.org/10.11591/ijai.v11.i4.pp1545-1553 DOI: https://doi.org/10.11591/ijai.v11.i4.pp1545-1553

Thomas, P. B., Bego, C. R. y Dourado, A. D. P. (2023). Predicting student retention via expectancy value theory using data gathered before the semester begins. ASEE Annual Conference & Exposition. https://doi.org/10.18260/1-2--43930 DOI: https://doi.org/10.18260/1-2--43930

Vanegas-Ayala, S. C., Leal-Lara, D. D. y Barón-Velandia, J. (2022). Predicción rendimiento estudiantes pruebas saber pro en pandemia junto con las características socioeconómicas: Prediction of student performance saber pro-test in pandemic together with socioeconomic characteristics. Tecnología Investigación y Academia, 9(2), 5-16. https://revistas.udistrital.edu.co/index.php/tia/article/view/19446

Whiting, P. F., Rutjes, A. W. S., Westwood, M. E. y QUADAS-2 Group. (2011). QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155(8), 529-536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009 DOI: https://doi.org/10.7326/0003-4819-155-8-201110180-00009

Wolff, R. F., Moons, K. G. M., Riley, R. D. y PROBAST Group. (2019). PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. Annals of Internal Medicine, 170(1), 51-58. https://doi.org/10.7326/M18-1376 DOI: https://doi.org/10.7326/M18-1376

Descargas

Publicado

2024-10-16

Cómo citar

Orozco Morales, N., & Osorio García, P. A. (2024). Aplicación de Modelos de Inteligencia Artificial en Pruebas Estandarizadas para la Optimización del Rendimiento Académico en Educación Superior . European Public & Social Innovation Review, 9, 1–21. https://doi.org/10.31637/epsir-2024-1605

Número

Sección

INNOVANDO EN LA GALAXIA DE LA INTELIGENCIA ARTIFICIAL