Application of Artificial Intelligence Models in Standardized Tests for Optimizing Academic Performance in Higher Education
DOI:
https://doi.org/10.31637/epsir-2024-1605Keywords:
artificial intelligence, academic performance, test, higher education, learning, quality of education, review, evaluationAbstract
Introduction: Although AI has shown potential to predict academic outcomes, design personalized learning programs, and support academic guidance, there are significant challenges such as the need for high-quality data, interpretability issues of some models, and the risk of perpetuating existing biases. The object of this systematic review explores the use of artificial intelligence in the educational field, specifically in the context of standardized tests. Methodology: To achieve this, a comprehensive review of the scientific literature is conducted following the PRISMA statement guidelines, with a sample of 17 articles published between 2019 and 2023 in journals indexed in Scopus. Results: The most used predictive models in these studies were found to be: Artificial Neural Networks, Decision Trees, Support Vector Machines, and Random Forest, Discussions: identifying benefits that include optimizing academic performance, personalizing learning, and improving educational decision-making. Conclusions: It is concluded that AI has great potential to improve the measurement of educational quality, but it is crucial to address these limitations and ethical considerations to ensure its effective and responsible application in the educational field.
Downloads
References
Alhazmi, E. y Sheneamer, A. (2023). Early predicting of students performance in higher education. IEEE Access, 11, 27579-27589. https://doi.org/10.1109/ACCESS.2023.3250702 DOI: https://doi.org/10.1109/ACCESS.2023.3250702
Assiri, B., Bashraheel, M. y Alsuri, A. (2022). Improve the accuracy of students admission at universities using machine learning techniques. En Proceedings of the 2022 7th International Conference on Data Science and Machine Learning Applications (CDMA), 127-132. https://doi.org/10.1109/CDMA54072.2022.00026 DOI: https://doi.org/10.1109/CDMA54072.2022.00026
Bonaccorso, G. (2018). Machine learning algorithms: Popular algorithms for data science and machine learning (2nd ed.). Packt Publishing. https://bit.ly/3VNOg5L
Bonaccorso, G. (2018). Mastering Machine Learning Algorithms: Expert Techniques to Implement Popular Machine Learning Algorithms and Fine-Tune Your Models. Packt Publishing. https://bit.ly/4bElf2o
Chen, X., Peng, Y., Gao, Y. y Cai, S. (2022). A competition model for prediction of admission scores of colleges and universities in Chinese college entrance examination. PLOS ONE, 17(10). https://doi.org/10.1371/journal.pone.0274221 DOI: https://doi.org/10.1371/journal.pone.0274221
Cunningham, J., Mukhopadhyay, R., Jain, R. R. K., Matayoshi, J., Cosyn, E. y Uzun, H. (2021). Pre-course prediction of at-risk calculus students. En I. Roll, et al. (Eds.), Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science, 12749, 124-128. Springer. https://doi.org/10.1007/978-3-030-78270-2_22 DOI: https://doi.org/10.1007/978-3-030-78270-2_22
Das, A. K. y Rodríguez-Marek, E. (2019). A predictive analytics system for forecasting student academic performance: Insights from a pilot project at Eastern Washington University. En 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), 1-6. IEEE. https://doi.org/10.1109/ICIEV.2019.8858523 DOI: https://doi.org/10.1109/ICIEV.2019.8858523
Das, S. y Cakmak, U. M. (2018). Hands-On Automated Machine Learning: A Beginner's Guide to Building Automated Machine Learning Systems Using AutoML and Python. Packt Publishing. https://bit.ly/3zolwZC
De Castro Rodríguez, D., Días de Lima, M., da Conceição, M. D., de Siqueira, V. S. y Barbosa, R. M. (2019). A data mining approach applied to the High School National Examination: Analysis of aspects of candidates to Brazilian universities. En P. Moura Oliveira et al. (Eds.), Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science, 11804, 3-14. Springer. https://doi.org/10.1007/978-3-030-30241-2_1 DOI: https://doi.org/10.1007/978-3-030-30241-2_1
Delahoz-Domínguez, E. J., Guillen-Ibarra, S. y Fontalvo-Herrera, T. (2020). Análisis de la acreditación de calidad en programas de ingeniería industrial y los resultados en las pruebas nacionales estandarizadas, en Colombia. Formación Universitaria, 13(1), 127-134. https://doi.org/10.4067/s0718-50062020000100127 DOI: https://doi.org/10.4067/S0718-50062020000100127
Elsevier. (n.d.). Scopus data. Elsevier. https://www.elsevier.com/products/scopus/data
Fateh Allah, A. G. (2020). Using machine learning to support students’ academic decisions. Journal of Theoretical and Applied Information Technology, 98(18), 3778-3795. https://www.jatit.org/volumes/Vol98No18/11Vol98No18.pdf
Gao, Z., Gatpandan, M. P. y Gatpandan, P. H. (2021). Classification decision tree algorithm in predicting students’ course preference. In 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), 93-97.
https://doi.org/10.1109/ISCEIC53685.2021.00026 DOI: https://doi.org/10.1109/ISCEIC53685.2021.00026
García Cruz, J. A., García Díaz, B. L., Guevara Valdiviezo, Y., Ortega Rojas, Y. K., Sakibaru Mauricio, L. A. y Vargas Cárdenas, C. A. (2023). Inteligencia artificial en la praxis docente: vínculo entre la tecnología y el proceso de aprendizaje. Josefrank Pernalete Lugo. https://doi.org/10.17613/vqt1-cp64
Guevara-Flores, K.-F., Hernandez-Calderon, J.-G. y Soto-Mendoza, V. (2023). Enhancing English proficiency test evaluation: Leveraging artificial intelligence for result classification. En 2023 10th International Conference on Soft Computing & Machine Intelligence, 183-187. https://doi.org/10.1109/ISCMI59957.2023.10458530 DOI: https://doi.org/10.1109/ISCMI59957.2023.10458530
Liu, Q., Wang, X., Huang, X. y Yin, X. (2020). Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data. Tunnelling and Underground Space Technology, 106, 103595. https://doi.org/10.1016/j.tust.2020.103595 DOI: https://doi.org/10.1016/j.tust.2020.103595
Martinez Neda, B. y Gago-Masague, S. (2022). Feasibility of machine learning support for holistic review of undergraduate applications. Proceedings of the 2022 International Conference on Applied Artificial Intelligence (ICAPAI), 1-6. https://doi.org/10.1109/ICAPAI55158.2022.9801571 DOI: https://doi.org/10.1109/ICAPAI55158.2022.9801571
Mengash, H. A. (2020). Using data mining techniques to predict student performance to support decision making in university admission systems. IEEE Access, 8, 55462-55470. https://doi.org/10.1109/ACCESS.2020.2981905 DOI: https://doi.org/10.1109/ACCESS.2020.2981905
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D. y Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372(71). https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
Pastora Alejo, B. y Fuentes Aparicio, A. (2021). La planificación de estrategias de enseñanza en un entorno virtual de aprendizaje. Revista Científica UISRAEL, 8(1), 59-76. https://doi.org/10.35290/rcui.v8n1.2021.341 DOI: https://doi.org/10.35290/rcui.v8n1.2021.341
Pentel, A. y Kaiva, L.-L. (2020). Predicting students’ state examination results based on previous grades and demographics. En 2020 11th International Conference on Information, Intelligence, Systems and Applications, 1-6. https://doi.org/10.1109/IISA50023.2020.9284401 DOI: https://doi.org/10.1109/IISA50023.2020.9284401
Qahmash, A., Ahmad, N. y Algarni, A. (2023). Investigating students’ pre-university admission requirements and their correlation with academic performance for medical students: An educational data mining approach. Brain Sciences, 13(3) https://doi.org/10.3390/brainsci13030456 DOI: https://doi.org/10.3390/brainsci13030456
Restrepo Gómez, B. (2013). Fundamentos teóricos de la evaluación por competencias: trazabilidad histórica del concepto. Uni-pluri/versidad, 13(2), 14-23. http://bit.ly/4cRKFKV
Rudd, G., Meissel, K. y Meyer, F. (2021). Measuring academic resilience in quantitative research: A systematic review of the literature. Educational Research Review, 34. https://doi.org/10.1016/j.edurev.2021.100402 DOI: https://doi.org/10.1016/j.edurev.2021.100402
Sanabria James, L. A., Pérez Almagro, M. C. y Riascos Hinestroza, L. E. (2020). Pruebas de evaluación Saber y PISA en la Educación Obligatoria de Colombia. Educatio Siglo XXI, 38(3), 231-254. https://doi.org/10.6018/educatio.452891 DOI: https://doi.org/10.6018/educatio.452891
Shea, B. J., Reeves, B. C., Wells, G., Thuku, M., Hamel, C., Moran, J. y Moher, D. (2017). AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ, 358. https://doi.org/10.1136/bmj.j4008 DOI: https://doi.org/10.1136/bmj.j4008
Song, Z. y Ke, K. (2023). Prediction for CET-4 based on random forest. Procedia Computer Science, 228, 429-437. https://doi.org/10.1016/j.procs.2023.11.049 DOI: https://doi.org/10.1016/j.procs.2023.11.049
Soto-Acevedo, M., Abuchar-Curi, A. M., Zuluaga-Ortiz, R. A. y Delahoz-Domínguez, E. J. (2023). A machine learning model to predict standardized tests in engineering programs in Colombia. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 18(3), 211-218. https://doi.org/10.1109/RITA.2023.3301396 DOI: https://doi.org/10.1109/RITA.2023.3301396
Sterne, J. A., Hernán, M. A., Reeves, B. C., Savovic, J., Berkman, N. D., Viswanathan, M. y Moher, D. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ, 355, https://doi.org/10.1136/bmj.i4919 DOI: https://doi.org/10.1136/bmj.i4919
Suvon, M. N. I., Siam, S. C., Ferdous, M., Alam, M. y Khan, R. (2022). Masters and doctor of philosophy admission prediction of Bangladeshi students into different classes of universities. IAES International Journal of Artificial Intelligence (IJ-AI), 11(4), 1545-1553. https://doi.org/10.11591/ijai.v11.i4.pp1545-1553 DOI: https://doi.org/10.11591/ijai.v11.i4.pp1545-1553
Thomas, P. B., Bego, C. R. y Dourado, A. D. P. (2023). Predicting student retention via expectancy value theory using data gathered before the semester begins. ASEE Annual Conference & Exposition. https://doi.org/10.18260/1-2--43930 DOI: https://doi.org/10.18260/1-2--43930
Vanegas-Ayala, S. C., Leal-Lara, D. D. y Barón-Velandia, J. (2022). Predicción rendimiento estudiantes pruebas saber pro en pandemia junto con las características socioeconómicas: Prediction of student performance saber pro-test in pandemic together with socioeconomic characteristics. Tecnología Investigación y Academia, 9(2), 5-16. https://revistas.udistrital.edu.co/index.php/tia/article/view/19446
Whiting, P. F., Rutjes, A. W. S., Westwood, M. E. y QUADAS-2 Group. (2011). QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155(8), 529-536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009 DOI: https://doi.org/10.7326/0003-4819-155-8-201110180-00009
Wolff, R. F., Moons, K. G. M., Riley, R. D. y PROBAST Group. (2019). PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. Annals of Internal Medicine, 170(1), 51-58. https://doi.org/10.7326/M18-1376 DOI: https://doi.org/10.7326/M18-1376
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nathalia Orozco Morales, Pavel Andrei Osorio García
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).