Fostering technological progress in space exploration to drive Sustainable Development Goals

Autores/as

DOI:

https://doi.org/10.31637/epsir-2025-323

Palabras clave:

SDG 9, the Cassini mission’s Electron Spectrometer (CAPS-ELS), photoelectron peaks, Titan's atmosphere, innovation, sustainable technological development, automated four-step detection algorithm, Earth's climate system

Resumen

Introduction: Exploration of space and gathering data on its atmospheric conditions could drive the development of advanced space technologies, such as atmospheric sensors and remote monitoring systems. Then, scientific research in seemingly distant areas, such as astrophysics and space exploration, can contribute to the achievement of the SDGs by promoting innovation and sustainable technological development. Methodology: We present an automated four-step detection algorithm for identification of photoelectron peaks based on a short-term-average/long-term-average phase picker taken along a characteristic function. Additional analysis is applied to the longer signal window after the declared detection to characterize photoelectron peaks and discard noise disturbances. Results: The modular design of the algorithm enables the substitution of alternative strategies in any of the four steps and the rapid implementation on new datasets. Discussion: The utility of the algorithm is illustrated through an overview example based on data from all available Titan flybys. The knowledge about photoelectron peaks in Titan's atmosphere could offer insights that could be valuable for addressing climate change on Earth. Conclusions: Understanding planetary plasma environments, including their interaction with the solar wind and other space weather phenomena, can indirectly contribute to our understanding of Earth's climate system. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Raquel Caro-Carretero, Universidad Pontificia Comillas

La Dra. Raquel Caro-Carretero,como Profesora Propia Adjunta en el Departamento de Organización Industrial de la Escuela Técnica Superior de Ingeniería (ICAI) de la Universidad Pontificia Comillas de Madrid, cuenta con una ampliaexperiencia docente como investigadora. Su trabajo abarca diversas áreas, desde la aplicación de la estadística en campos ingenieriles y económico-financieros hasta el análisis de migraciones, turismo, catástrofes y Ciencias del Espacio. Es responsable dela Cátedra de Catástrofes Fundación AON España en Comillas. Durante una década, también ha compartido su conocimiento en la Facultad de Ciencias Económicas y Empresariales de Comillas (ICADE).Su compromiso con la excelencia académica y su dedicación a la investigación se reflejan en su participación activa en conferencias internacionales, colaboraciones interdisciplinarias y publicaciones en revistas de alto impacto.

Citas

Aguirre, C., Franzese, G., Esposito, F., Vázquez, L., Caro-Carretero, R., Vilela-Mendes, R., Ramírez-Nicolás, M., Cozzolino, F., & Popab, C.I. (2017). Signal-adapted tomography as a tool for dust devil detection. Aeolian Research, 29, 13-22. https://doi.org/10.1016/j.aeolia.2017.09.005 DOI: https://doi.org/10.1016/j.aeolia.2017.09.005

Akram, J., & Eaton, D.W. (2016). A review and appraisal of arrival-time picking methods for downhole microseismic data. Geophysics, 81 (2), KS71-KS91. https://doi.org/10.1190/geo2014-0500.1 DOI: https://doi.org/10.1190/geo2014-0500.1

Allen, R. (1982). Automatic phase pickers: Their present use and future prospects. The Bulletin Of The Seismological Society Of America, 72(6B), S225-S242. https://doi.org/10.1785/bssa07206b0225 DOI: https://doi.org/10.1785/BSSA07206B0225

Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic Kurtosis-based P and S phase picker designed for local and regional seismic networks. The Bulletin Of The Seismological Society Of America, 104, 394-409. https://doi.org/10.1785/0120120347 DOI: https://doi.org/10.1785/0120120347

Brown, R.H., Lebreton, J-P, & Waite, J.H. (Eds) (2010). Titan from Cassini-Huygens. Springer Science+Business Media B.V. https://doi.org/10.1007/978-1-4020-9215-2 DOI: https://doi.org/10.1007/978-1-4020-9215-2

Cao, Y.-T., Wellbrock, A., Coates, A. J., Caro-Carretero, R., Jones, G. H, Cui, J., Galand, M., & Dougherty, M. K. (2020). Field-aligned photoelectron energy peaks at high altitude and nightside of Titan. Journal of Geophysical Research: Planets, 125(1) https://doi.org/10.1029/2019JE006252 DOI: https://doi.org/10.1029/2019JE006252

Caro-Carretero, R., Wellbrock, A., & Cao, Y. (2019). Cassini ELS Photoelectron identification. Mendeley Data. http://dx.doi.org/10.17632/dwxhzbnvr9.1

Caro-Carretero, R. & García-Jiménez, F. (2023). Impact of the implementation of the new quarter-hourly model on a wind farm in the peninsular electricity system. DYNA, 98, 486-580. https://doi.org/10.6036/10882 DOI: https://doi.org/10.6036/10882

Coates, A. J., Johnstone, A. D., Sojka, J. J., & Wrenn, G. L. (1985). Ionospheric photoelectrons observed in the magnetosphere at distances up to 7 Earth radii. Planetary and Space Science, 33, 1267-1275. https://doi.org/10.1016/0032-0633(85)90005-4 DOI: https://doi.org/10.1016/0032-0633(85)90005-4

Coates, A. J., McAndrews, H. J., Rymer, A. M., Young, D. T., Crary, F. J., Maurice, S., Johnson, R. E., Baragiola, R. A., Tokar, R. L., Sittler, E. C., & Lewis, G. R. (2005). Plasma electrons above Saturn's main rings: CAPS observations. Geophysical Research Letters, 32, L14S09. https://doi.org/10.1029/2005GL022694 DOI: https://doi.org/10.1029/2005GL022694

Coates, A. J., Crary, F. J., Young, D. T., Szego, K., Arridge, C. S., Bebesi, Z., Sittler, E. C. Jr., Hartle, R. E, & Hill, T. W. (2007). Ionospheric electrons in Titan's tail: Plasma structure during the Cassini T9 encounter. Geophysical Research Letters, 34, L24S05. https://doi.org/10.1029/2007GL030919 DOI: https://doi.org/10.1029/2007GL030919

Coates, A. J., Jones, G. H., Lewis, G. R., Wellbrock, A., Young, D. T., Crary, F. J., Johnson, R.E., Cassidy, T.A., & Hill, T. W. (2010). Negative ions in the Enceladus plume. Icarus, 206, 618-622. https://doi.org/10.1016/j.icarus.2009.07.013 DOI: https://doi.org/10.1016/j.icarus.2009.07.013

Coates, A. J., Tsang, S. M. E., Wellbrock, A., Frahm, R. A., Winningham, J. D., Barabash, S., Lundin, R., Young, D.T., F.J., & Crary, F. J. (2011). Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan. Planetary and Space Science, 59, 1019-1027. https://doi.org/10.1016/j.pss.2010.07.016 DOI: https://doi.org/10.1016/j.pss.2010.07.016

Coates, A. J., Wellbrock, A., Jones, G. H., Waite, J. H., Schippers, P., Thomsen, M. F., Arridge, C. S., & Tokar, R. L. (2013). Photoelectrons in the Enceladus plume. Journal of Geophysical Research: Space Physics, 118, 5099-5108. https://doi.org/10.1002/jgra.50495 DOI: https://doi.org/10.1002/jgra.50495

Cravens, T. E., et al. (2009). Model-data comparisons for Titan’s nightside ionosphere. Icarus, 199, 174-188. https://doi:10.1016/j.icarus.2008.09.005 DOI: https://doi.org/10.1016/j.icarus.2008.09.005

Crósta, Á. P., Silber, E. A., Lopes, R. M. C., Johnson, B. C., Bjonnes, E., Malaska, M. J., Vance, S., Sotin, C., Solomonidou, A., & Soderblom, J. M. (2021). Modeling the formation of Menrva impact crater on Titan: Implications for habitability. Icarus, 370, 114679. https://doi.org/10.1016/j.icarus.2021.114679 DOI: https://doi.org/10.1016/j.icarus.2021.114679

Dunn, W., Branduardi-Raymont, G., Ray, L., Jackman, C., Kraft, R., Elsner, R., Rae, I.J., Yao, Z., Vogt, M. F., Jones, G. H., Gladstone, G. R., Orton, G. S., Sinclair, J. A., Ford, P. G., Graham, G. A., Caro-Carretero, R., & Coates, A. (2017). The Independent Pulsations of Jupiter’s Northern and Southern X-ray Auroras. Nature Astronomy, 1, 758–764. http://dx.doi.org/10.1038/s41550-017-0262-6 DOI: https://doi.org/10.1038/s41550-017-0262-6

Fox, J. L., & Dalgarno, A. (1979), Ionization, luminosity, and heating of the upper atmosphere of Mars. Journal of Geophysical Research, 84, 7315-7333. https://doi:10.1029/JA084iA12p07315 DOI: https://doi.org/10.1029/JA084iA12p07315

Frahm, R. A., Winningham, J. D., Sharber, J. R., Scherrer, J. R., Jeffers, S. J., Coates, A. J., Linder, D.R., Kataria, D.O., Lundin, R., Barabash, S., Holmström, M., Andersson, H., Yamauchi, M., Grigoriev, A., Kallio, E., Säles, T., Riihelä, P., Schmidt, W., Koskinen, H., …, & Dierker, C. (2006). Carbon dioxide photoelectron energy peaks at Mars. Icarus, 182, 371–382. https://doi.org/10.1016/j.icarus.2006.01.014 DOI: https://doi.org/10.1016/j.icarus.2006.01.014

Friedson, A. J., West, R. A., Wilson, E., Oyafuso, F., & Orton, G. S. (2009). A global climate model of Titan’s atmosphere and surface. Planetary And Space Science, 57(14-15), 1931-1949. https://doi.org/10.1016/j.pss.2009.05.006 DOI: https://doi.org/10.1016/j.pss.2009.05.006

Galand, M., Yelle, R.V., Cui, R. V., Wahlund, J.-E., Vuitton, V., Wellbrock, A., & Coates, A (2010). Ionization sources in Titan’s deep ionosphere. Journal of Geophysical Research, 115, A07312, https://doi:10.1029/2009JA015100 DOI: https://doi.org/10.1029/2009JA015100

Gan, L., Keller, C.N., & Cravens, T.E. (1992). Electrons in the ionosphere of Titan. Journal of Geophysical Research, 97(A8), 12137-12151. https://doi.org/10.1029/92JA00300 DOI: https://doi.org/10.1029/92JA00300

Gu, H., Cui, J., Lavvas, P., Niu, D., Wu, X., Guo, J., He, F., & Wei, Y. (2019). Dayside nitrogen and carbon escape on Titan: the role of exothermic chemistry. Astronomy & Astrophysics, 633, A8. https://doi.org/10.1051/0004-6361/201936826 DOI: https://doi.org/10.1051/0004-6361/201936826

Haider, S.A. (1986). Some molecular nitrogen emission from Titan-solar EUV interaction. Journal of Geophysical Research, 91, 8998-9000. https://doi.org/10.1029/JA091iA08p08998 DOI: https://doi.org/10.1029/JA091iA08p08998

Hörst, S. M. (2017). Titan’s atmosphere and climate. Journal Of Geophysical Research. Planets, 122(3), 432-482. https://doi.org/10.1002/2016je005240 DOI: https://doi.org/10.1002/2016JE005240

Jackson, B., & Lorenz, R. (2015). A multiyear dust devil vortex survey using an automated search of pressure time series. Journal Of Geophysical Research. Planets, 120, 401-412. https://doi: 10.1002/2014JE004712 DOI: https://doi.org/10.1002/2014JE004712

Linder, D. R., Coates, A. J., Woodliffe, R. D., Alsop, C., Johnstone, A. D., Grande, M., Preece, A., Narheim, B., & Young, D. T. (1998). The Cassini CAPS electron spectrometer. In R. F. Pfaff, J. E. Borovsky, & D. T. Young (Eds.). American geophysical union geophysical monograph series (Vol. 102, pp. 257). Washington, DC: American Geophysical Union. DOI: https://doi.org/10.1029/GM102p0257

Lorenz R.D, & Lanagan P.D. (2014). A barometric survey of dust devil vortices on a desert playa. Boundary Layer Meteorology, 53, 555-68. http://dx.doi.org/101029/2003JE002161 DOI: https://doi.org/10.1007/s10546-014-9954-y

Mitchell, J. L., & Lora, J. M. (2016). The Climate of Titan. Annual Review Of Earth And Planetary Sciences, 44(1), 353-380. https://doi.org/10.1146/annurev-earth-060115-012428 DOI: https://doi.org/10.1146/annurev-earth-060115-012428

Mulholland, P., & Wilde, S. P. R. (2020). An Iterative Mathematical Climate Model of the Atmosphere of Titan. Journal Of Water Resource And Ocean Science, 9(1), 15. https://doi.org/10.11648/j.wros.20200901.13 DOI: https://doi.org/10.11648/j.wros.20200901.13

Murphy, J., & Nelli, S. (2002). Mars Pathfinder convective vortices: frequency of occurrence. Geophysical Research Letters, 29, 2103. https://doi.org/10.1029/2002GL015214 DOI: https://doi.org/10.1029/2002GL015214

Nagy, A. F., Doering, J. P., Peterson, W. K., Torr, M. R., & Banks, P. M. (1977). Comparison between calculated and measured photoelectron fluxes from Atmosphere Explorer C and E. Journal of Geophysical Research, 82, 5099-5103. https://doi.org/10.1029/JA082i032p05099 DOI: https://doi.org/10.1029/JA082i032p05099

NASA Space Science Data Coordinated Archive (2023). Accessed 31 May 2024 at https://nssdc.gsfc.nasa.gov/nmc/dataset/display.action?id=PSFP-00374. Data are available on-line from the Planetary Data System (PDS) at: https://pds-ppi.igpp.ucla.edu/data/CO-E_J_S_SW-CAPS-2-UNCALIBRATED-V1.0/

Neubauer, F.M., Gurnett, D. A., Scudder, J. D., & Hartle, R.E. (1984). Titan’s magnetospheric interaction, in Saturn. University of Arizona. Press.

Ozak, N., Cravens, T. E., Jones, G. H., Coates, A. J., & Robertson, I. P. (2012). Modeling of electron fluxes in the Enceladus plume. Journal of Geophysical Research, 117, A06220. https://doi.org/10.1029/2011JA017497 DOI: https://doi.org/10.1029/2011JA017497

Ringrose T.J., Patel M.R., Towner M.C., Balme M, Metzger S.M., & Zarnecki J.C. (2007). The meteorological signatures of dust devils on Mars. Planet Space Sci., 55, 2151-63. https://doi.org/10.1016/j.pss.2007.07.002 DOI: https://doi.org/10.1016/j.pss.2007.07.002

Schippers, P., Blanc, M., André, N., Dandouras, I., Lewis, G. R., Gilbert, L. K., … Dougherty, M. K. (2008). Multi‐instrument analysis of electron populations in Saturn's magnetosphere. Journal of Geophysical Research, 113, A07208. https://doi.org/10.1029/2008JA013098 DOI: https://doi.org/10.1029/2008JA013098

Schippers, P., André, N., Johnson, R. E., Blanc, M., Dandouras, I., Coates, A. J., Krimigis, S. M., & Young, D. T. (2009). Identification of photoelectron energy peaks in Saturn's inner neutral torus. Journal of Geophysical Research, 114, A12212. https://doi.org/10.1029/2009JA014368 DOI: https://doi.org/10.1029/2009JA014368

Sylvestre, M., Teanby, N. A., D’Ollone, J. V., Vinatier, S., Bézard, B., Lebonnois, S., & Irwin, P. G. J. (2020). Seasonal evolution of temperatures in Titan’s lower stratosphere. Icarus, 344, 113188. https://doi.org/10.1016/j.icarus.2019.02.003 DOI: https://doi.org/10.1016/j.icarus.2019.02.003

Taylor, S. A., Coates, A. J., Jones, G. H., Wellbrock, A., Fazakerley, A. N., Desai, R. T, Caro-Carretero, R., Michiko, M. W., Schippers, P. & Waite, J. H. (2018). Modeling, analysis, and interpretation of photoelectron energy spectra at Enceladus observed by Cassini. Journal of Geophysical Research: Space Physics, 123 (1), 287-296. https://doi.org/10.1002/2017JA024536 DOI: https://doi.org/10.1002/2017JA024536

Tsang, S.M.E., Coates, A. J., Jones, G. H., Frahm, R.A., Winningham, J.D., Barabash, S., Lundin, R., & Fedorove, A. (2015). Ionospheric photoelectrons at Venus: Case studies and first observation in the tail. Planetary and Space Science, 113-114, 384-394. https://doi.org/10.1016/j.pss.2015.01.019 DOI: https://doi.org/10.1016/j.pss.2015.01.019

Wellbrock, A., Coates, A. J., Sillanpää, I., Jones, G. H., Arridge, C. S., Lewis, G. R., Young, D.T., Crary, F. J., & Aylward, A. D. (2012). Cassini observations of ionospheric photoelectrons at large distances from Titan: Implications for Titan’s exospheric environment and magnetic tail. Journal of Geophysical Research, 117, A03216. https://doi:10.1029/2011JA017113 DOI: https://doi.org/10.1029/2011JA017113

Xiong, S., Muller, J., & Caro-Carretero, R. (2018). A New Method for Automatically Tracing Englacial Layers from MCoRDS Data in NW Greenland. Remote Sensing, 10(1), 43. https://doi.org/10.3390/rs10010043 and http://www.mdpi.com/2072-4292/10/1/43 DOI: https://doi.org/10.3390/rs10010043

Young, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., Coates, A. J., Goldstein, R., Grande, M., Hill, T. W., Johnson, R. E., Kelha, V., Mccomas, D. J., Sittler, E. C., Svenes, K. R., Szegö, K., Tanskanen, P., Ahola, K., Anderson, D., Bakshi, S., Baragiola, R. A., …, & Zinsmeyer, C. (2004). Cassini plasma spectrometer investigation. Space Science Reviews, 114, 1–112. https://doi.org/10.1007/s11214-004-1406-4 DOI: https://doi.org/10.1007/s11214-004-1406-4

Descargas

Publicado

2024-07-03

Cómo citar

Caro-Carretero, R. (2024). Fostering technological progress in space exploration to drive Sustainable Development Goals. European Public & Social Innovation Review, 10, 1–19. https://doi.org/10.31637/epsir-2025-323

Número

Sección

Investigación e Inteligencia Artificial