Fostering technological progress in space exploration to drive Sustainable Development Goals
DOI:
https://doi.org/10.31637/epsir-2025-323Palabras clave:
SDG 9, the Cassini mission’s Electron Spectrometer (CAPS-ELS), photoelectron peaks, Titan's atmosphere, innovation, sustainable technological development, automated four-step detection algorithm, Earth's climate systemResumen
Introduction: Exploration of space and gathering data on its atmospheric conditions could drive the development of advanced space technologies, such as atmospheric sensors and remote monitoring systems. Then, scientific research in seemingly distant areas, such as astrophysics and space exploration, can contribute to the achievement of the SDGs by promoting innovation and sustainable technological development. Methodology: We present an automated four-step detection algorithm for identification of photoelectron peaks based on a short-term-average/long-term-average phase picker taken along a characteristic function. Additional analysis is applied to the longer signal window after the declared detection to characterize photoelectron peaks and discard noise disturbances. Results: The modular design of the algorithm enables the substitution of alternative strategies in any of the four steps and the rapid implementation on new datasets. Discussion: The utility of the algorithm is illustrated through an overview example based on data from all available Titan flybys. The knowledge about photoelectron peaks in Titan's atmosphere could offer insights that could be valuable for addressing climate change on Earth. Conclusions: Understanding planetary plasma environments, including their interaction with the solar wind and other space weather phenomena, can indirectly contribute to our understanding of Earth's climate system.
Descargas
Citas
Aguirre, C., Franzese, G., Esposito, F., Vázquez, L., Caro-Carretero, R., Vilela-Mendes, R., Ramírez-Nicolás, M., Cozzolino, F., & Popab, C.I. (2017). Signal-adapted tomography as a tool for dust devil detection. Aeolian Research, 29, 13-22. https://doi.org/10.1016/j.aeolia.2017.09.005 DOI: https://doi.org/10.1016/j.aeolia.2017.09.005
Akram, J., & Eaton, D.W. (2016). A review and appraisal of arrival-time picking methods for downhole microseismic data. Geophysics, 81 (2), KS71-KS91. https://doi.org/10.1190/geo2014-0500.1 DOI: https://doi.org/10.1190/geo2014-0500.1
Allen, R. (1982). Automatic phase pickers: Their present use and future prospects. The Bulletin Of The Seismological Society Of America, 72(6B), S225-S242. https://doi.org/10.1785/bssa07206b0225 DOI: https://doi.org/10.1785/BSSA07206B0225
Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic Kurtosis-based P and S phase picker designed for local and regional seismic networks. The Bulletin Of The Seismological Society Of America, 104, 394-409. https://doi.org/10.1785/0120120347 DOI: https://doi.org/10.1785/0120120347
Brown, R.H., Lebreton, J-P, & Waite, J.H. (Eds) (2010). Titan from Cassini-Huygens. Springer Science+Business Media B.V. https://doi.org/10.1007/978-1-4020-9215-2 DOI: https://doi.org/10.1007/978-1-4020-9215-2
Cao, Y.-T., Wellbrock, A., Coates, A. J., Caro-Carretero, R., Jones, G. H, Cui, J., Galand, M., & Dougherty, M. K. (2020). Field-aligned photoelectron energy peaks at high altitude and nightside of Titan. Journal of Geophysical Research: Planets, 125(1) https://doi.org/10.1029/2019JE006252 DOI: https://doi.org/10.1029/2019JE006252
Caro-Carretero, R., Wellbrock, A., & Cao, Y. (2019). Cassini ELS Photoelectron identification. Mendeley Data. http://dx.doi.org/10.17632/dwxhzbnvr9.1
Caro-Carretero, R. & García-Jiménez, F. (2023). Impact of the implementation of the new quarter-hourly model on a wind farm in the peninsular electricity system. DYNA, 98, 486-580. https://doi.org/10.6036/10882 DOI: https://doi.org/10.6036/10882
Coates, A. J., Johnstone, A. D., Sojka, J. J., & Wrenn, G. L. (1985). Ionospheric photoelectrons observed in the magnetosphere at distances up to 7 Earth radii. Planetary and Space Science, 33, 1267-1275. https://doi.org/10.1016/0032-0633(85)90005-4 DOI: https://doi.org/10.1016/0032-0633(85)90005-4
Coates, A. J., McAndrews, H. J., Rymer, A. M., Young, D. T., Crary, F. J., Maurice, S., Johnson, R. E., Baragiola, R. A., Tokar, R. L., Sittler, E. C., & Lewis, G. R. (2005). Plasma electrons above Saturn's main rings: CAPS observations. Geophysical Research Letters, 32, L14S09. https://doi.org/10.1029/2005GL022694 DOI: https://doi.org/10.1029/2005GL022694
Coates, A. J., Crary, F. J., Young, D. T., Szego, K., Arridge, C. S., Bebesi, Z., Sittler, E. C. Jr., Hartle, R. E, & Hill, T. W. (2007). Ionospheric electrons in Titan's tail: Plasma structure during the Cassini T9 encounter. Geophysical Research Letters, 34, L24S05. https://doi.org/10.1029/2007GL030919 DOI: https://doi.org/10.1029/2007GL030919
Coates, A. J., Jones, G. H., Lewis, G. R., Wellbrock, A., Young, D. T., Crary, F. J., Johnson, R.E., Cassidy, T.A., & Hill, T. W. (2010). Negative ions in the Enceladus plume. Icarus, 206, 618-622. https://doi.org/10.1016/j.icarus.2009.07.013 DOI: https://doi.org/10.1016/j.icarus.2009.07.013
Coates, A. J., Tsang, S. M. E., Wellbrock, A., Frahm, R. A., Winningham, J. D., Barabash, S., Lundin, R., Young, D.T., F.J., & Crary, F. J. (2011). Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan. Planetary and Space Science, 59, 1019-1027. https://doi.org/10.1016/j.pss.2010.07.016 DOI: https://doi.org/10.1016/j.pss.2010.07.016
Coates, A. J., Wellbrock, A., Jones, G. H., Waite, J. H., Schippers, P., Thomsen, M. F., Arridge, C. S., & Tokar, R. L. (2013). Photoelectrons in the Enceladus plume. Journal of Geophysical Research: Space Physics, 118, 5099-5108. https://doi.org/10.1002/jgra.50495 DOI: https://doi.org/10.1002/jgra.50495
Cravens, T. E., et al. (2009). Model-data comparisons for Titan’s nightside ionosphere. Icarus, 199, 174-188. https://doi:10.1016/j.icarus.2008.09.005 DOI: https://doi.org/10.1016/j.icarus.2008.09.005
Crósta, Á. P., Silber, E. A., Lopes, R. M. C., Johnson, B. C., Bjonnes, E., Malaska, M. J., Vance, S., Sotin, C., Solomonidou, A., & Soderblom, J. M. (2021). Modeling the formation of Menrva impact crater on Titan: Implications for habitability. Icarus, 370, 114679. https://doi.org/10.1016/j.icarus.2021.114679 DOI: https://doi.org/10.1016/j.icarus.2021.114679
Dunn, W., Branduardi-Raymont, G., Ray, L., Jackman, C., Kraft, R., Elsner, R., Rae, I.J., Yao, Z., Vogt, M. F., Jones, G. H., Gladstone, G. R., Orton, G. S., Sinclair, J. A., Ford, P. G., Graham, G. A., Caro-Carretero, R., & Coates, A. (2017). The Independent Pulsations of Jupiter’s Northern and Southern X-ray Auroras. Nature Astronomy, 1, 758–764. http://dx.doi.org/10.1038/s41550-017-0262-6 DOI: https://doi.org/10.1038/s41550-017-0262-6
Fox, J. L., & Dalgarno, A. (1979), Ionization, luminosity, and heating of the upper atmosphere of Mars. Journal of Geophysical Research, 84, 7315-7333. https://doi:10.1029/JA084iA12p07315 DOI: https://doi.org/10.1029/JA084iA12p07315
Frahm, R. A., Winningham, J. D., Sharber, J. R., Scherrer, J. R., Jeffers, S. J., Coates, A. J., Linder, D.R., Kataria, D.O., Lundin, R., Barabash, S., Holmström, M., Andersson, H., Yamauchi, M., Grigoriev, A., Kallio, E., Säles, T., Riihelä, P., Schmidt, W., Koskinen, H., …, & Dierker, C. (2006). Carbon dioxide photoelectron energy peaks at Mars. Icarus, 182, 371–382. https://doi.org/10.1016/j.icarus.2006.01.014 DOI: https://doi.org/10.1016/j.icarus.2006.01.014
Friedson, A. J., West, R. A., Wilson, E., Oyafuso, F., & Orton, G. S. (2009). A global climate model of Titan’s atmosphere and surface. Planetary And Space Science, 57(14-15), 1931-1949. https://doi.org/10.1016/j.pss.2009.05.006 DOI: https://doi.org/10.1016/j.pss.2009.05.006
Galand, M., Yelle, R.V., Cui, R. V., Wahlund, J.-E., Vuitton, V., Wellbrock, A., & Coates, A (2010). Ionization sources in Titan’s deep ionosphere. Journal of Geophysical Research, 115, A07312, https://doi:10.1029/2009JA015100 DOI: https://doi.org/10.1029/2009JA015100
Gan, L., Keller, C.N., & Cravens, T.E. (1992). Electrons in the ionosphere of Titan. Journal of Geophysical Research, 97(A8), 12137-12151. https://doi.org/10.1029/92JA00300 DOI: https://doi.org/10.1029/92JA00300
Gu, H., Cui, J., Lavvas, P., Niu, D., Wu, X., Guo, J., He, F., & Wei, Y. (2019). Dayside nitrogen and carbon escape on Titan: the role of exothermic chemistry. Astronomy & Astrophysics, 633, A8. https://doi.org/10.1051/0004-6361/201936826 DOI: https://doi.org/10.1051/0004-6361/201936826
Haider, S.A. (1986). Some molecular nitrogen emission from Titan-solar EUV interaction. Journal of Geophysical Research, 91, 8998-9000. https://doi.org/10.1029/JA091iA08p08998 DOI: https://doi.org/10.1029/JA091iA08p08998
Hörst, S. M. (2017). Titan’s atmosphere and climate. Journal Of Geophysical Research. Planets, 122(3), 432-482. https://doi.org/10.1002/2016je005240 DOI: https://doi.org/10.1002/2016JE005240
Jackson, B., & Lorenz, R. (2015). A multiyear dust devil vortex survey using an automated search of pressure time series. Journal Of Geophysical Research. Planets, 120, 401-412. https://doi: 10.1002/2014JE004712 DOI: https://doi.org/10.1002/2014JE004712
Linder, D. R., Coates, A. J., Woodliffe, R. D., Alsop, C., Johnstone, A. D., Grande, M., Preece, A., Narheim, B., & Young, D. T. (1998). The Cassini CAPS electron spectrometer. In R. F. Pfaff, J. E. Borovsky, & D. T. Young (Eds.). American geophysical union geophysical monograph series (Vol. 102, pp. 257). Washington, DC: American Geophysical Union. DOI: https://doi.org/10.1029/GM102p0257
Lorenz R.D, & Lanagan P.D. (2014). A barometric survey of dust devil vortices on a desert playa. Boundary Layer Meteorology, 53, 555-68. http://dx.doi.org/101029/2003JE002161 DOI: https://doi.org/10.1007/s10546-014-9954-y
Mitchell, J. L., & Lora, J. M. (2016). The Climate of Titan. Annual Review Of Earth And Planetary Sciences, 44(1), 353-380. https://doi.org/10.1146/annurev-earth-060115-012428 DOI: https://doi.org/10.1146/annurev-earth-060115-012428
Mulholland, P., & Wilde, S. P. R. (2020). An Iterative Mathematical Climate Model of the Atmosphere of Titan. Journal Of Water Resource And Ocean Science, 9(1), 15. https://doi.org/10.11648/j.wros.20200901.13 DOI: https://doi.org/10.11648/j.wros.20200901.13
Murphy, J., & Nelli, S. (2002). Mars Pathfinder convective vortices: frequency of occurrence. Geophysical Research Letters, 29, 2103. https://doi.org/10.1029/2002GL015214 DOI: https://doi.org/10.1029/2002GL015214
Nagy, A. F., Doering, J. P., Peterson, W. K., Torr, M. R., & Banks, P. M. (1977). Comparison between calculated and measured photoelectron fluxes from Atmosphere Explorer C and E. Journal of Geophysical Research, 82, 5099-5103. https://doi.org/10.1029/JA082i032p05099 DOI: https://doi.org/10.1029/JA082i032p05099
NASA Space Science Data Coordinated Archive (2023). Accessed 31 May 2024 at https://nssdc.gsfc.nasa.gov/nmc/dataset/display.action?id=PSFP-00374. Data are available on-line from the Planetary Data System (PDS) at: https://pds-ppi.igpp.ucla.edu/data/CO-E_J_S_SW-CAPS-2-UNCALIBRATED-V1.0/
Neubauer, F.M., Gurnett, D. A., Scudder, J. D., & Hartle, R.E. (1984). Titan’s magnetospheric interaction, in Saturn. University of Arizona. Press.
Ozak, N., Cravens, T. E., Jones, G. H., Coates, A. J., & Robertson, I. P. (2012). Modeling of electron fluxes in the Enceladus plume. Journal of Geophysical Research, 117, A06220. https://doi.org/10.1029/2011JA017497 DOI: https://doi.org/10.1029/2011JA017497
Ringrose T.J., Patel M.R., Towner M.C., Balme M, Metzger S.M., & Zarnecki J.C. (2007). The meteorological signatures of dust devils on Mars. Planet Space Sci., 55, 2151-63. https://doi.org/10.1016/j.pss.2007.07.002 DOI: https://doi.org/10.1016/j.pss.2007.07.002
Schippers, P., Blanc, M., André, N., Dandouras, I., Lewis, G. R., Gilbert, L. K., … Dougherty, M. K. (2008). Multi‐instrument analysis of electron populations in Saturn's magnetosphere. Journal of Geophysical Research, 113, A07208. https://doi.org/10.1029/2008JA013098 DOI: https://doi.org/10.1029/2008JA013098
Schippers, P., André, N., Johnson, R. E., Blanc, M., Dandouras, I., Coates, A. J., Krimigis, S. M., & Young, D. T. (2009). Identification of photoelectron energy peaks in Saturn's inner neutral torus. Journal of Geophysical Research, 114, A12212. https://doi.org/10.1029/2009JA014368 DOI: https://doi.org/10.1029/2009JA014368
Sylvestre, M., Teanby, N. A., D’Ollone, J. V., Vinatier, S., Bézard, B., Lebonnois, S., & Irwin, P. G. J. (2020). Seasonal evolution of temperatures in Titan’s lower stratosphere. Icarus, 344, 113188. https://doi.org/10.1016/j.icarus.2019.02.003 DOI: https://doi.org/10.1016/j.icarus.2019.02.003
Taylor, S. A., Coates, A. J., Jones, G. H., Wellbrock, A., Fazakerley, A. N., Desai, R. T, Caro-Carretero, R., Michiko, M. W., Schippers, P. & Waite, J. H. (2018). Modeling, analysis, and interpretation of photoelectron energy spectra at Enceladus observed by Cassini. Journal of Geophysical Research: Space Physics, 123 (1), 287-296. https://doi.org/10.1002/2017JA024536 DOI: https://doi.org/10.1002/2017JA024536
Tsang, S.M.E., Coates, A. J., Jones, G. H., Frahm, R.A., Winningham, J.D., Barabash, S., Lundin, R., & Fedorove, A. (2015). Ionospheric photoelectrons at Venus: Case studies and first observation in the tail. Planetary and Space Science, 113-114, 384-394. https://doi.org/10.1016/j.pss.2015.01.019 DOI: https://doi.org/10.1016/j.pss.2015.01.019
Wellbrock, A., Coates, A. J., Sillanpää, I., Jones, G. H., Arridge, C. S., Lewis, G. R., Young, D.T., Crary, F. J., & Aylward, A. D. (2012). Cassini observations of ionospheric photoelectrons at large distances from Titan: Implications for Titan’s exospheric environment and magnetic tail. Journal of Geophysical Research, 117, A03216. https://doi:10.1029/2011JA017113 DOI: https://doi.org/10.1029/2011JA017113
Xiong, S., Muller, J., & Caro-Carretero, R. (2018). A New Method for Automatically Tracing Englacial Layers from MCoRDS Data in NW Greenland. Remote Sensing, 10(1), 43. https://doi.org/10.3390/rs10010043 and http://www.mdpi.com/2072-4292/10/1/43 DOI: https://doi.org/10.3390/rs10010043
Young, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., Coates, A. J., Goldstein, R., Grande, M., Hill, T. W., Johnson, R. E., Kelha, V., Mccomas, D. J., Sittler, E. C., Svenes, K. R., Szegö, K., Tanskanen, P., Ahola, K., Anderson, D., Bakshi, S., Baragiola, R. A., …, & Zinsmeyer, C. (2004). Cassini plasma spectrometer investigation. Space Science Reviews, 114, 1–112. https://doi.org/10.1007/s11214-004-1406-4 DOI: https://doi.org/10.1007/s11214-004-1406-4
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Raquel Caro-Carretero
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).