Potenciar los ODS a través del avance tecnológico en la exploración espacial

Authors

DOI:

https://doi.org/10.31637/epsir-2025-323

Keywords:

sistema climático de la Tierra, ODS 9, algoritmo automatizado de detección en cuatro pasos, desarrollo tecnológico sostenible, innovación, Espectrómetro de Electrones, atmósfera de Titán, Espectrómetro de Electrones (CAPS-ELS) de la misión Cassini

Abstract

Introducción: La exploración del espacio y la recopilación de datos sobre sus condiciones atmosféricas pueden impulsar el desarrollo de tecnologías espaciales avanzadas, como sensores atmosféricos y sistemas de monitoreo remoto. La investigación científica en áreas aparentemente distantes, como la astrofísica y la exploración espacial, puede contribuir al logro de los ODS al promover la innovación y el desarrollo tecnológico sostenible. Metodología: Presentamos un algoritmo automatizado de detección en cuatro pasos para la identificación de picos de fotoelectrones utilizando una técnica utilizada en sismología que se basa en la relación entre dos promedios móviles de la señal. Para caracterizar los picos y descartar perturbaciones de ruido se aplica un análisis adicional después de la detección declarada. Resultados: El diseño modular del algoritmo permite la sustitución de estrategias alternativas en cualquiera de los cuatro pasos y la implementación rápida en nuevos conjuntos de datos. Discusiones: La utilidad del algoritmo se ilustra a través de un ejemplo general basado en datos de todos los sobrevuelos disponibles de Titán. Conclusiones: Comprender los entornos de plasma planetario, incluida su interacción con el viento solar y otros fenómenos meteorológicos espaciales, puede contribuir indirectamente a nuestra comprensión del sistema climático de la Tierra.

Downloads

Download data is not yet available.

Author Biography

Raquel Caro-Carretero, Comillas Pontifical University

Dr. Raquel Caro-Carretero, as Associate Professor in the Department of Industrial Organisation at the School of Engineering (ICAI) of the Universidad Pontificia Comillas de Madrid, has extensive teaching and research experience. Her work covers diverse areas, from the application of statistics in engineering and economic-financial fields to the analysis of migration, tourism, catastrophes and Space Sciences. She is head of the AON Spain Foundation Chair in Disasters at Comillas. For a decade, he has also shared his knowledge at the Faculty of Economics and Business at Comillas (ICADE), and his commitment to academic excellence and dedication to research is reflected in his active participation in international conferences, interdisciplinary collaborations and publications in high-impact journals.

References

Aguirre, C., Franzese, G., Esposito, F., Vázquez, L., Caro-Carretero, R., Vilela-Mendes, R., Ramírez-Nicolás, M., Cozzolino, F., & Popab, C.I. (2017). Signal-adapted tomography as a tool for dust devil detection. Aeolian Research, 29, 13-22. https://doi.org/10.1016/j.aeolia.2017.09.005 DOI: https://doi.org/10.1016/j.aeolia.2017.09.005

Akram, J., & Eaton, D.W. (2016). A review and appraisal of arrival-time picking methods for downhole microseismic data. Geophysics, 81 (2), KS71-KS91. https://doi.org/10.1190/geo2014-0500.1 DOI: https://doi.org/10.1190/geo2014-0500.1

Allen, R. (1982). Automatic phase pickers: Their present use and future prospects. The Bulletin Of The Seismological Society Of America, 72(6B), S225-S242. https://doi.org/10.1785/bssa07206b0225 DOI: https://doi.org/10.1785/BSSA07206B0225

Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic Kurtosis-based P and S phase picker designed for local and regional seismic networks. The Bulletin Of The Seismological Society Of America, 104, 394-409. https://doi.org/10.1785/0120120347 DOI: https://doi.org/10.1785/0120120347

Brown, R.H., Lebreton, J-P, & Waite, J.H. (Eds) (2010). Titan from Cassini-Huygens. Springer Science+Business Media B.V. https://doi.org/10.1007/978-1-4020-9215-2 DOI: https://doi.org/10.1007/978-1-4020-9215-2

Cao, Y.-T., Wellbrock, A., Coates, A. J., Caro-Carretero, R., Jones, G. H, Cui, J., Galand, M., & Dougherty, M. K. (2020). Field-aligned photoelectron energy peaks at high altitude and nightside of Titan. Journal of Geophysical Research: Planets, 125(1) https://doi.org/10.1029/2019JE006252 DOI: https://doi.org/10.1029/2019JE006252

Caro-Carretero, R., Wellbrock, A., & Cao, Y. (2019). Cassini ELS Photoelectron identification. Mendeley Data. http://dx.doi.org/10.17632/dwxhzbnvr9.1

Caro-Carretero, R. & García-Jiménez, F. (2023). Impact of the implementation of the new quarter-hourly model on a wind farm in the peninsular electricity system. DYNA, 98, 486-580. https://doi.org/10.6036/10882 DOI: https://doi.org/10.6036/10882

Coates, A. J., Johnstone, A. D., Sojka, J. J., & Wrenn, G. L. (1985). Ionospheric photoelectrons observed in the magnetosphere at distances up to 7 Earth radii. Planetary and Space Science, 33, 1267-1275. https://doi.org/10.1016/0032-0633(85)90005-4 DOI: https://doi.org/10.1016/0032-0633(85)90005-4

Coates, A. J., McAndrews, H. J., Rymer, A. M., Young, D. T., Crary, F. J., Maurice, S., Johnson, R. E., Baragiola, R. A., Tokar, R. L., Sittler, E. C., & Lewis, G. R. (2005). Plasma electrons above Saturn's main rings: CAPS observations. Geophysical Research Letters, 32, L14S09. https://doi.org/10.1029/2005GL022694 DOI: https://doi.org/10.1029/2005GL022694

Coates, A. J., Crary, F. J., Young, D. T., Szego, K., Arridge, C. S., Bebesi, Z., Sittler, E. C. Jr., Hartle, R. E, & Hill, T. W. (2007). Ionospheric electrons in Titan's tail: Plasma structure during the Cassini T9 encounter. Geophysical Research Letters, 34, L24S05. https://doi.org/10.1029/2007GL030919 DOI: https://doi.org/10.1029/2007GL030919

Coates, A. J., Jones, G. H., Lewis, G. R., Wellbrock, A., Young, D. T., Crary, F. J., Johnson, R.E., Cassidy, T.A., & Hill, T. W. (2010). Negative ions in the Enceladus plume. Icarus, 206, 618-622. https://doi.org/10.1016/j.icarus.2009.07.013 DOI: https://doi.org/10.1016/j.icarus.2009.07.013

Coates, A. J., Tsang, S. M. E., Wellbrock, A., Frahm, R. A., Winningham, J. D., Barabash, S., Lundin, R., Young, D.T., F.J., & Crary, F. J. (2011). Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan. Planetary and Space Science, 59, 1019-1027. https://doi.org/10.1016/j.pss.2010.07.016 DOI: https://doi.org/10.1016/j.pss.2010.07.016

Coates, A. J., Wellbrock, A., Jones, G. H., Waite, J. H., Schippers, P., Thomsen, M. F., Arridge, C. S., & Tokar, R. L. (2013). Photoelectrons in the Enceladus plume. Journal of Geophysical Research: Space Physics, 118, 5099-5108. https://doi.org/10.1002/jgra.50495 DOI: https://doi.org/10.1002/jgra.50495

Cravens, T. E., et al. (2009). Model-data comparisons for Titan’s nightside ionosphere. Icarus, 199, 174-188. https://doi:10.1016/j.icarus.2008.09.005 DOI: https://doi.org/10.1016/j.icarus.2008.09.005

Crósta, Á. P., Silber, E. A., Lopes, R. M. C., Johnson, B. C., Bjonnes, E., Malaska, M. J., Vance, S., Sotin, C., Solomonidou, A., & Soderblom, J. M. (2021). Modeling the formation of Menrva impact crater on Titan: Implications for habitability. Icarus, 370, 114679. https://doi.org/10.1016/j.icarus.2021.114679 DOI: https://doi.org/10.1016/j.icarus.2021.114679

Dunn, W., Branduardi-Raymont, G., Ray, L., Jackman, C., Kraft, R., Elsner, R., Rae, I.J., Yao, Z., Vogt, M. F., Jones, G. H., Gladstone, G. R., Orton, G. S., Sinclair, J. A., Ford, P. G., Graham, G. A., Caro-Carretero, R., & Coates, A. (2017). The Independent Pulsations of Jupiter’s Northern and Southern X-ray Auroras. Nature Astronomy, 1, 758–764. http://dx.doi.org/10.1038/s41550-017-0262-6 DOI: https://doi.org/10.1038/s41550-017-0262-6

Fox, J. L., & Dalgarno, A. (1979), Ionization, luminosity, and heating of the upper atmosphere of Mars. Journal of Geophysical Research, 84, 7315-7333. https://doi:10.1029/JA084iA12p07315 DOI: https://doi.org/10.1029/JA084iA12p07315

Frahm, R. A., Winningham, J. D., Sharber, J. R., Scherrer, J. R., Jeffers, S. J., Coates, A. J., Linder, D.R., Kataria, D.O., Lundin, R., Barabash, S., Holmström, M., Andersson, H., Yamauchi, M., Grigoriev, A., Kallio, E., Säles, T., Riihelä, P., Schmidt, W., Koskinen, H., …, & Dierker, C. (2006). Carbon dioxide photoelectron energy peaks at Mars. Icarus, 182, 371–382. https://doi.org/10.1016/j.icarus.2006.01.014 DOI: https://doi.org/10.1016/j.icarus.2006.01.014

Friedson, A. J., West, R. A., Wilson, E., Oyafuso, F., & Orton, G. S. (2009). A global climate model of Titan’s atmosphere and surface. Planetary And Space Science, 57(14-15), 1931-1949. https://doi.org/10.1016/j.pss.2009.05.006 DOI: https://doi.org/10.1016/j.pss.2009.05.006

Galand, M., Yelle, R.V., Cui, R. V., Wahlund, J.-E., Vuitton, V., Wellbrock, A., & Coates, A (2010). Ionization sources in Titan’s deep ionosphere. Journal of Geophysical Research, 115, A07312, https://doi:10.1029/2009JA015100 DOI: https://doi.org/10.1029/2009JA015100

Gan, L., Keller, C.N., & Cravens, T.E. (1992). Electrons in the ionosphere of Titan. Journal of Geophysical Research, 97(A8), 12137-12151. https://doi.org/10.1029/92JA00300 DOI: https://doi.org/10.1029/92JA00300

Gu, H., Cui, J., Lavvas, P., Niu, D., Wu, X., Guo, J., He, F., & Wei, Y. (2019). Dayside nitrogen and carbon escape on Titan: the role of exothermic chemistry. Astronomy & Astrophysics, 633, A8. https://doi.org/10.1051/0004-6361/201936826 DOI: https://doi.org/10.1051/0004-6361/201936826

Haider, S.A. (1986). Some molecular nitrogen emission from Titan-solar EUV interaction. Journal of Geophysical Research, 91, 8998-9000. https://doi.org/10.1029/JA091iA08p08998 DOI: https://doi.org/10.1029/JA091iA08p08998

Hörst, S. M. (2017). Titan’s atmosphere and climate. Journal Of Geophysical Research. Planets, 122(3), 432-482. https://doi.org/10.1002/2016je005240 DOI: https://doi.org/10.1002/2016JE005240

Jackson, B., & Lorenz, R. (2015). A multiyear dust devil vortex survey using an automated search of pressure time series. Journal Of Geophysical Research. Planets, 120, 401-412. https://doi: 10.1002/2014JE004712 DOI: https://doi.org/10.1002/2014JE004712

Linder, D. R., Coates, A. J., Woodliffe, R. D., Alsop, C., Johnstone, A. D., Grande, M., Preece, A., Narheim, B., & Young, D. T. (1998). The Cassini CAPS electron spectrometer. In R. F. Pfaff, J. E. Borovsky, & D. T. Young (Eds.). American geophysical union geophysical monograph series (Vol. 102, pp. 257). Washington, DC: American Geophysical Union. DOI: https://doi.org/10.1029/GM102p0257

Lorenz R.D, & Lanagan P.D. (2014). A barometric survey of dust devil vortices on a desert playa. Boundary Layer Meteorology, 53, 555-68. http://dx.doi.org/101029/2003JE002161 DOI: https://doi.org/10.1007/s10546-014-9954-y

Mitchell, J. L., & Lora, J. M. (2016). The Climate of Titan. Annual Review Of Earth And Planetary Sciences, 44(1), 353-380. https://doi.org/10.1146/annurev-earth-060115-012428 DOI: https://doi.org/10.1146/annurev-earth-060115-012428

Mulholland, P., & Wilde, S. P. R. (2020). An Iterative Mathematical Climate Model of the Atmosphere of Titan. Journal Of Water Resource And Ocean Science, 9(1), 15. https://doi.org/10.11648/j.wros.20200901.13 DOI: https://doi.org/10.11648/j.wros.20200901.13

Murphy, J., & Nelli, S. (2002). Mars Pathfinder convective vortices: frequency of occurrence. Geophysical Research Letters, 29, 2103. https://doi.org/10.1029/2002GL015214 DOI: https://doi.org/10.1029/2002GL015214

Nagy, A. F., Doering, J. P., Peterson, W. K., Torr, M. R., & Banks, P. M. (1977). Comparison between calculated and measured photoelectron fluxes from Atmosphere Explorer C and E. Journal of Geophysical Research, 82, 5099-5103. https://doi.org/10.1029/JA082i032p05099 DOI: https://doi.org/10.1029/JA082i032p05099

NASA Space Science Data Coordinated Archive (2023). Accessed 31 May 2024 at https://nssdc.gsfc.nasa.gov/nmc/dataset/display.action?id=PSFP-00374. Data are available on-line from the Planetary Data System (PDS) at: https://pds-ppi.igpp.ucla.edu/data/CO-E_J_S_SW-CAPS-2-UNCALIBRATED-V1.0/

Neubauer, F.M., Gurnett, D. A., Scudder, J. D., & Hartle, R.E. (1984). Titan’s magnetospheric interaction, in Saturn. University of Arizona. Press.

Ozak, N., Cravens, T. E., Jones, G. H., Coates, A. J., & Robertson, I. P. (2012). Modeling of electron fluxes in the Enceladus plume. Journal of Geophysical Research, 117, A06220. https://doi.org/10.1029/2011JA017497 DOI: https://doi.org/10.1029/2011JA017497

Ringrose T.J., Patel M.R., Towner M.C., Balme M, Metzger S.M., & Zarnecki J.C. (2007). The meteorological signatures of dust devils on Mars. Planet Space Sci., 55, 2151-63. https://doi.org/10.1016/j.pss.2007.07.002 DOI: https://doi.org/10.1016/j.pss.2007.07.002

Schippers, P., Blanc, M., André, N., Dandouras, I., Lewis, G. R., Gilbert, L. K., … Dougherty, M. K. (2008). Multi‐instrument analysis of electron populations in Saturn's magnetosphere. Journal of Geophysical Research, 113, A07208. https://doi.org/10.1029/2008JA013098 DOI: https://doi.org/10.1029/2008JA013098

Schippers, P., André, N., Johnson, R. E., Blanc, M., Dandouras, I., Coates, A. J., Krimigis, S. M., & Young, D. T. (2009). Identification of photoelectron energy peaks in Saturn's inner neutral torus. Journal of Geophysical Research, 114, A12212. https://doi.org/10.1029/2009JA014368 DOI: https://doi.org/10.1029/2009JA014368

Sylvestre, M., Teanby, N. A., D’Ollone, J. V., Vinatier, S., Bézard, B., Lebonnois, S., & Irwin, P. G. J. (2020). Seasonal evolution of temperatures in Titan’s lower stratosphere. Icarus, 344, 113188. https://doi.org/10.1016/j.icarus.2019.02.003 DOI: https://doi.org/10.1016/j.icarus.2019.02.003

Taylor, S. A., Coates, A. J., Jones, G. H., Wellbrock, A., Fazakerley, A. N., Desai, R. T, Caro-Carretero, R., Michiko, M. W., Schippers, P. & Waite, J. H. (2018). Modeling, analysis, and interpretation of photoelectron energy spectra at Enceladus observed by Cassini. Journal of Geophysical Research: Space Physics, 123 (1), 287-296. https://doi.org/10.1002/2017JA024536 DOI: https://doi.org/10.1002/2017JA024536

Tsang, S.M.E., Coates, A. J., Jones, G. H., Frahm, R.A., Winningham, J.D., Barabash, S., Lundin, R., & Fedorove, A. (2015). Ionospheric photoelectrons at Venus: Case studies and first observation in the tail. Planetary and Space Science, 113-114, 384-394. https://doi.org/10.1016/j.pss.2015.01.019 DOI: https://doi.org/10.1016/j.pss.2015.01.019

Wellbrock, A., Coates, A. J., Sillanpää, I., Jones, G. H., Arridge, C. S., Lewis, G. R., Young, D.T., Crary, F. J., & Aylward, A. D. (2012). Cassini observations of ionospheric photoelectrons at large distances from Titan: Implications for Titan’s exospheric environment and magnetic tail. Journal of Geophysical Research, 117, A03216. https://doi:10.1029/2011JA017113 DOI: https://doi.org/10.1029/2011JA017113

Xiong, S., Muller, J., & Caro-Carretero, R. (2018). A New Method for Automatically Tracing Englacial Layers from MCoRDS Data in NW Greenland. Remote Sensing, 10(1), 43. https://doi.org/10.3390/rs10010043 and http://www.mdpi.com/2072-4292/10/1/43 DOI: https://doi.org/10.3390/rs10010043

Young, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., Coates, A. J., Goldstein, R., Grande, M., Hill, T. W., Johnson, R. E., Kelha, V., Mccomas, D. J., Sittler, E. C., Svenes, K. R., Szegö, K., Tanskanen, P., Ahola, K., Anderson, D., Bakshi, S., Baragiola, R. A., …, & Zinsmeyer, C. (2004). Cassini plasma spectrometer investigation. Space Science Reviews, 114, 1–112. https://doi.org/10.1007/s11214-004-1406-4 DOI: https://doi.org/10.1007/s11214-004-1406-4

Downloads

Published

2024-07-03

How to Cite

Caro-Carretero, R. (2024). Potenciar los ODS a través del avance tecnológico en la exploración espacial. European Public & Social Innovation Review, 10, 1–19. https://doi.org/10.31637/epsir-2025-323

Issue

Section

Research and Artificial Intelligence