La Inteligencia Artificial en educación: percepciones y saberes de los docentes
DOI:
https://doi.org/10.31637/epsir-2024-898Palabras clave:
Inteligencia artificial (IA), Modelos de lenguaje a gran escala, docencia, percepciones, conocimiento, enseñanza, aprendizaje, tecnologías educativasResumen
Introducción: Este estudio exploró el conocimiento y las percepciones de profesores respecto a la IA y los large language models (LLM), en el marco de un proyecto colaborativo entre la Universidad de las Américas de Chile y la Secretaría Ministerial de Educación de Valparaíso. Metodología: Se utilizó un cuestionario de 13 preguntas, aplicadas a 41 docentes. El análisis de los resultados se realizó desde una perspectiva de diseño mixto. Resultados: Los docentes mostraron entusiasmo hacia la IA más que miedo, reconociendo un conocimiento superficial de los LLM. La pandemia cambió su percepción de las tecnologías educativas, y el principal obstáculo identificado fue el acceso a internet. Discusión: Los docentes no diferencian claramente entre herramientas de IA y entornos virtuales, y se observó la necesidad de mejorar su formación en este nuevo contexto. No se encontraron diferencias significativas entre docentes de zonas rurales y urbanas. Conclusiones: Es necesario avanzar en la formación docente sobre IA y actualizar las prácticas de enseñanza y evaluación que se consideran obsoletas en este contexto tecnológico.
Descargas
Citas
Albadarin, Y., Saqr, M., Pope, N. y Tukiainen, M. (2024). A systematic literature review of empirical research on ChatGPT in education. Discov Educ 3, 60. https://tinyurl.com/2apkds6u DOI: https://doi.org/10.1007/s44217-024-00138-2
Atkinson-Abutridy, J. (2024) Grandes Modelos de Lenguaje. Conceptos, técnicas y aplicaciones. Alfaomega.
Demir, K. A. (2021). Smart education framework. Smart Learning Environments, 8(1), 29. DOI: https://doi.org/10.1186/s40561-021-00170-x
Educar Chile. (2023). Mapa de región de Valparaíso, Chile [Mapa]. Educar Chile
Gan, W., Qi, Z., Wu, J. y Lin, C. (2023). Large Language Models in Education: Vision and Opportunities. ArXiv. https://doi.org/10.48550/arXiv.2311.13160 DOI: https://doi.org/10.1109/BigData59044.2023.10386291
Giletta, M., Giordano, A., Mercaú, N., Orden, P. y Villarreal, V. (2020). Inteligencia Artificial: definiciones en disputa. Sociales Investiga, 9, 20-33. https://tinyurl.com/2dpf7ybx
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S. y Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144. DOI: https://doi.org/10.1145/3422622
Haga, C. (2022). Artificial intelligence in nursing. Okayama Igakkai Zasshi (Journal of Okayama Medical Association). https://tinyurl.com/2xmanlae DOI: https://doi.org/10.4044/joma.134.28
Hamaniuk, V. A. (2021). The potential of Large Language Models in language education. Educational Dimension, 5, 208-210. https://doi.org/10.31812/ed.650 DOI: https://doi.org/10.31812/ed.650
Harris, L. A. (2023). Artificial Intelligence: Overview. In Recent Advances, and Considerations for the 118th Congress, Congressional Research Service, Library of Congress, 47644.
Hernández Fernández, C. y Baptista, P. (2014) Metodología de la investigación. MacGraw Hill.
Howe, N. y Strauss, W. (2000). Millennials rising: The next great generation. Vintage.
Hurtado Talavera, F. J. (2020). La educación en tiempos de pandemia: los desafíos de la escuela del siglo XXI. Revista arbitrada del centro de investigación y estudios gerenciales, 44, 176-187.
Jaber, T. A. (2022). Artificial intelligence in computer networks. Periodicals of Engineering and Natural Sciences (PEN). https://tinyurl.com/24l22gwn DOI: https://doi.org/10.21533/pen.v10i1.2616
Jansen, H. (2013). La lógica de la investigación por encuesta cualitativa y su posición en el campo de los métodos de investigación social. Paradigmas, 5(1), 39-72.
Jeon, J. y Lee, S. (2023). Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT. Education and Information Technologies, 28(12), 15873-15892. DOI: https://doi.org/10.1007/s10639-023-11834-1
Juca-Maldonado, F. X. (2023). Inteligencia artificial en motores de búsqueda: percepciones de los docentes universitarios y su impacto en el proceso de enseñanza y aprendizaje. INNOVA Research Journal, 8(3.1), 45-58. DOI: https://doi.org/10.33890/innova.v8.n3.1.2023.2336
Macneil, S., Kim, J., Leinonen, J., Denny, P., Bernstein, S., Becker, B., Wermelinger, M., Hellas, A., Tran, A., Sarsa, S., Prather, J. y Kumar, V. (2022). The Implications of Large Language Models for CS Teachers and Students. Proceedings of the 54th ACM Technical Symposium on Computer Science Education, 2, 1255. https://doi.org/10.1145/3545947.3573358 DOI: https://doi.org/10.1145/3545947.3573358
Martínez Miguélez, M. (2006). Validez y confiabilidad en la metodología cualitativa. Paradígma, 27(2), 07-33. https://tinyurl.com/24ud448v
Maslej, N., Fattorini, L., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Ngo, H., Niebles, J. C., Parli, V., Shoham, Y., Wald, R., Clark, J. y Perrault, R. (2023). The AI index 2023 annual report. AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA.
Mehak, Kumar, R. y Mehta, A. (2023). Artificial Intelligence. International Journal of Advanced Research in Science, Communication and Technology, 3(7), 20-30 https://tinyurl.com/2dohngv8 DOI: https://doi.org/10.48175/IJARSCT-9466
Morandín-Ahuerma, F. (2022). What is Artificial Intelligence?. International Journal of Research Publication and Reviews, 3(12) 1947-1951. https://tinyurl.com/28lzzymc DOI: https://doi.org/10.55248/gengpi.2022.31261
Liu, B. L., Morales, D., Roser-Chinchilla, J., Sabzalieva, E., Valentini, A., Vieira do Nascimento, D. y Yerovi, C. (2023). Harnessing the era of artificial intelligence in higher education: a primer for higher education stakeholders. UNESCO
OECD (2001), “Understanding the Digital Divide”, OECD Digital Economy Papers, 49, OECD Publishing, Paris, https://doi.org/10.1787/236405667766. DOI: https://doi.org/10.1787/236405667766
OpenAI. (2024). Definitions of Artificial Intelligence. Consensus. primer for higher education stakeholders. https://consensus.app/?utm_source=chatgpt
Shoikova, E., Nikolov, R. y Kovatcheva, E. (2017). Conceptualising of smart education. Electrotechnica & Electronica (E+ E), 52.
Tripathi, S. (2021). Artificial Intelligence. https://tinyurl.com/2dkwqgeb DOI: https://doi.org/10.4018/978-1-7998-3499-1.ch001
UNESCO (2019a) Beijing Consensus on Artificial Intelligence and Education. Beijing: UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000368303
UNESCO (2019b) Steering AI and Advanced ICTs for Knowledge Societies Human Rights implications - A ROAM Perspective. Paris: UNESCO.
Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45. DOI: https://doi.org/10.1145/365153.365168
Zhu, Z. T., Yu, M. H. y Riezebos, P. (2016). A research framework of smart education. Smart learning environments, 3, 1-17. DOI: https://doi.org/10.1186/s40561-016-0026-2
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Paola Carolina Espejo Aubá
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).