Artificial Intelligence in education: teachers' perspectives and knowledge

Authors

DOI:

https://doi.org/10.31637/epsir-2024-898

Keywords:

Artificial intelligence (AI), Large language models, teaching, perceptions, knowledge, education, learning, educational technologies

Abstract

Introduction: This study explored the knowledge and perceptions of teachers regarding AI and large language models (LLM), in the framework of a collaborative project between the Universidad de las Américas de Chile and the Secretaría Ministerial de Educación de Valparaíso. Methodology: A questionnaire of 13 questions was used, applied to 41 teachers. The analysis of the results was carried out from a mixed design perspective. Results: Teachers showed enthusiasm towards AI rather than fear, recognizing a superficial knowledge of LLM. The pandemic changed their perception of educational technologies, and the main obstacle identified was Internet access. Discussion: Teachers do not clearly differentiate between AI tools and virtual environments, and the need to improve their training in this new context was observed. No significant differences were found between teachers in rural and urban areas. Conclusions: There is a need to advance in teacher training on AI and to update teaching and evaluation practices that are considered obsolete in this technological context.

Downloads

Download data is not yet available.

Author Biography

Paola Carolina Espejo Aubá, Universidad de las Américas

Physical Education Teacher, Master in Education and PHD Candidate in Education and ICT. Professional with vast experience in Higher Education, both in the academic and management fields, where she has served in management positions of responsibility, leading groups of collaborators and students oriented towards the development of people and their capabilities, in the pursuit of excellence. With experience in institutional and career accreditations, collaborative work with other Chilean and foreign institutions, management and operational control of large budgets, design and formulation of academic projects and development models, student relations and their representations. Academic, teacher and presenter, specialist in Online Education, evaluation, methodologies for virtual learning environments and Artificial Intelligence in education.

References

Albadarin, Y., Saqr, M., Pope, N. y Tukiainen, M. (2024). A systematic literature review of empirical research on ChatGPT in education. Discov Educ 3, 60. https://tinyurl.com/2apkds6u DOI: https://doi.org/10.1007/s44217-024-00138-2

Atkinson-Abutridy, J. (2024) Grandes Modelos de Lenguaje. Conceptos, técnicas y aplicaciones. Alfaomega.

Demir, K. A. (2021). Smart education framework. Smart Learning Environments, 8(1), 29. DOI: https://doi.org/10.1186/s40561-021-00170-x

Educar Chile. (2023). Mapa de región de Valparaíso, Chile [Mapa]. Educar Chile

Gan, W., Qi, Z., Wu, J. y Lin, C. (2023). Large Language Models in Education: Vision and Opportunities. ArXiv. https://doi.org/10.48550/arXiv.2311.13160 DOI: https://doi.org/10.1109/BigData59044.2023.10386291

Giletta, M., Giordano, A., Mercaú, N., Orden, P. y Villarreal, V. (2020). Inteligencia Artificial: definiciones en disputa. Sociales Investiga, 9, 20-33. https://tinyurl.com/2dpf7ybx

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S. y Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144. DOI: https://doi.org/10.1145/3422622

Haga, C. (2022). Artificial intelligence in nursing. Okayama Igakkai Zasshi (Journal of Okayama Medical Association). https://tinyurl.com/2xmanlae DOI: https://doi.org/10.4044/joma.134.28

Hamaniuk, V. A. (2021). The potential of Large Language Models in language education. Educational Dimension, 5, 208-210. https://doi.org/10.31812/ed.650 DOI: https://doi.org/10.31812/ed.650

Harris, L. A. (2023). Artificial Intelligence: Overview. In Recent Advances, and Considerations for the 118th Congress, Congressional Research Service, Library of Congress, 47644.

Hernández Fernández, C. y Baptista, P. (2014) Metodología de la investigación. MacGraw Hill.

Howe, N. y Strauss, W. (2000). Millennials rising: The next great generation. Vintage.

https://tinyurl.com/25qqggml

Hurtado Talavera, F. J. (2020). La educación en tiempos de pandemia: los desafíos de la escuela del siglo XXI. Revista arbitrada del centro de investigación y estudios gerenciales, 44, 176-187.

Jaber, T. A. (2022). Artificial intelligence in computer networks. Periodicals of Engineering and Natural Sciences (PEN). https://tinyurl.com/24l22gwn DOI: https://doi.org/10.21533/pen.v10i1.2616

Jansen, H. (2013). La lógica de la investigación por encuesta cualitativa y su posición en el campo de los métodos de investigación social. Paradigmas, 5(1), 39-72.

Jeon, J. y Lee, S. (2023). Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT. Education and Information Technologies, 28(12), 15873-15892. DOI: https://doi.org/10.1007/s10639-023-11834-1

Juca-Maldonado, F. X. (2023). Inteligencia artificial en motores de búsqueda: percepciones de los docentes universitarios y su impacto en el proceso de enseñanza y aprendizaje. INNOVA Research Journal, 8(3.1), 45-58. DOI: https://doi.org/10.33890/innova.v8.n3.1.2023.2336

Macneil, S., Kim, J., Leinonen, J., Denny, P., Bernstein, S., Becker, B., Wermelinger, M., Hellas, A., Tran, A., Sarsa, S., Prather, J. y Kumar, V. (2022). The Implications of Large Language Models for CS Teachers and Students. Proceedings of the 54th ACM Technical Symposium on Computer Science Education, 2, 1255. https://doi.org/10.1145/3545947.3573358 DOI: https://doi.org/10.1145/3545947.3573358

Martínez Miguélez, M. (2006). Validez y confiabilidad en la metodología cualitativa. Paradígma, 27(2), 07-33. https://tinyurl.com/24ud448v

Maslej, N., Fattorini, L., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Ngo, H., Niebles, J. C., Parli, V., Shoham, Y., Wald, R., Clark, J. y Perrault, R. (2023). The AI index 2023 annual report. AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA.

Mehak, Kumar, R. y Mehta, A. (2023). Artificial Intelligence. International Journal of Advanced Research in Science, Communication and Technology, 3(7), 20-30 https://tinyurl.com/2dohngv8 DOI: https://doi.org/10.48175/IJARSCT-9466

Morandín-Ahuerma, F. (2022). What is Artificial Intelligence?. International Journal of Research Publication and Reviews, 3(12) 1947-1951. https://tinyurl.com/28lzzymc DOI: https://doi.org/10.55248/gengpi.2022.31261

Liu, B. L., Morales, D., Roser-Chinchilla, J., Sabzalieva, E., Valentini, A., Vieira do Nascimento, D. y Yerovi, C. (2023). Harnessing the era of artificial intelligence in higher education: a primer for higher education stakeholders. UNESCO

OECD (2001), “Understanding the Digital Divide”, OECD Digital Economy Papers, 49, OECD Publishing, Paris, https://doi.org/10.1787/236405667766. DOI: https://doi.org/10.1787/236405667766

OpenAI. (2024). Definitions of Artificial Intelligence. Consensus. primer for higher education stakeholders. https://consensus.app/?utm_source=chatgpt

Shoikova, E., Nikolov, R. y Kovatcheva, E. (2017). Conceptualising of smart education. Electrotechnica & Electronica (E+ E), 52.

Tripathi, S. (2021). Artificial Intelligence. https://tinyurl.com/2dkwqgeb DOI: https://doi.org/10.4018/978-1-7998-3499-1.ch001

UNESCO (2019a) Beijing Consensus on Artificial Intelligence and Education. Beijing: UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000368303

UNESCO (2019b) Steering AI and Advanced ICTs for Knowledge Societies Human Rights implications - A ROAM Perspective. Paris: UNESCO.

Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45. DOI: https://doi.org/10.1145/365153.365168

Zhu, Z. T., Yu, M. H. y Riezebos, P. (2016). A research framework of smart education. Smart learning environments, 3, 1-17. DOI: https://doi.org/10.1186/s40561-016-0026-2

Published

2024-10-16

How to Cite

Espejo Aubá, P. C. (2024). Artificial Intelligence in education: teachers’ perspectives and knowledge. European Public & Social Innovation Review, 9, 1–19. https://doi.org/10.31637/epsir-2024-898

Issue

Section

INNOVATING IN THE GALAXY OF ARTIFICIAL INTELLIGENCE