Soil improvement through chemical substitution: A case study of the Azogues - El Descanso motorway (Ecuador)

Authors

DOI:

https://doi.org/10.31637/epsir-2025-1233

Keywords:

volumetric changes, calcium hydroxide, C. McDowell abacus, compression, direct cut, stabilization, soil resistance, expansive soils

Abstract

Introduction: Expansive clays undergo volume changes due to variations in their moisture acquired by capillarity and/or infiltration. Some buildings founded on expansive clay strata experience constant volumetric changes. Methodology: A method of chemical stabilization is applied to altered and unaltered soil samples obtained in the sector of the Autopista Azogues-El Descanso, by replacing the soil with various percentages of lime hydroxide obtained from the abacus proposed by Charles McDowell, based on the plasticity index and the percentage of soil passing through sieve No. 40 by wet method. Results: The results of tests applied to the natural soil classify it as inorganic clays of high plasticity, expansive type CH, to which 3% of lime hydroxide obtained from Charles McDowell’s abacus was added; this modified soil underwent defined physical and chemical transformations of the characterization, being reclassified as organic loamy soil type ML. Discussion: The percentage of lime hydroxide added to the soil causes a reduction in plasticity and improves its behavior, due to the new silicates and calcium aluminates generated by the substitution. Conclusions: The soil stabilized with 3% lime hydroxide is characterized by an increase in shear strength and compressive resistance.

Downloads

Download data is not yet available.

Author Biographies

Ana Paulina Ortiz Viñán, Universidad Técnica Particular de Loja

Civil Engineer, 1999, Master in Road Engineering, 2017. Has held positions in public institutions: Technician at the Municipality of Zamora Canton, 2000-2001; Technician at QUIPAEN Construction, 2002; Civil Works Inspector at the Provincial Council of Loja, 2003-2005; Technician at the Municipal Transit Unit of Loja, 2005-2010; Head of the Municipal Transit Unit, 2010-2014; Technician at Municipal Public Works, 2015. Research Professor at the Department of Civil Engineering of the Technical University of Loja since October 2015 to the present, has taught several subjects such as: Strength of Materials, Structures, Concrete, Construction Technology, Topography, Statics

Juan Guanín-Vásquez, Universidad Técnica Particular de Loja

Master of Science from the University of Granada, Spain. Mining Engineer graduated from the National University of Loja. Full-time professor at UTPL. Has taught courses in Mining Fundamentals, Rock Blasting: Mining Exploitation. Member of the research group: Mining Metallurgical Research and Processes of the Department of Geosciences. Training at the Catholic Education Congress “Teaching is an Act of Hope.” IV Research and Innovation Meeting 2021 – PUCE. Recognition for the poster was one of the most voted. Type of recognition: research. Type of award: Local.

References

Al-Mukhtar, M., Khattab, S. y Alcover, J. F. (2012). Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology, 139-140, 17–27. https://doi.org/10.1016/j.enggeo.2012.04.004 DOI: https://doi.org/10.1016/j.enggeo.2012.04.004

American Association of State Highway and Transportation Officials. (2013). Standard method of test for determining the liquid limit of soils (AASHTO T89)

American Association of State Highway and Transportation Officials. (2014). Standard method of test for compressive strength of hydraulic cement mortars (using portions of prisms broken in flexure) (AASHTO T86-70).

American Association of State Highway and Transportation Officials. (2020). Standard method of test for particle size analysis of soils (AASHTO T88-70).

American Society for Testing and Materials. (1966). Method of test for liquid limit of soils (ASTM- D423 66).

American Society for Testing and Materials. (1970). Method of test for plastic limit and plasticity ondex of soils (ASTM D424).

American Society for Testing and Materials. (2000). Standard test methods for unconfined compressive strength of cohesive soil (ASTM D2166).

American Society for Testing and Materials. (2007). Standard test method for particle-size analysis of soils (ASTM D422-63)

American Society for Testing and Materials. (2018a). Standard guide for site characterization for engineering design and construction purposes (ASTM-D420-18).

American Society for Testing and Materials. (2018b) Standard test methods for liquid limit, plastic limit, and plasticity index of soils (ASTM D4318-17e1).

American Society for Testing and Materials. (2021a). Standard test methods for laboratory compaction characteristics of soil using standard effort (ASTM D698).

American Society for Testing and Materials. (2021b). Standard test method for expansion index of soils (ASTM D4829).

American Society for Testing and Materials. (2023). Standard test method for direct shear test of soils under consolidated drained conditions (ASTM D3080-23).

Balaji, S., Wadhave, M. D., Waghe, A. P., Rathod, D. C. y Razvi, S. S. (2018). Soil Stabilization by using Lime. International Journal of Engineering and Management Research, 8(2), 79-86. https://acortar.link/BNH2Ce DOI: https://doi.org/10.31033/ijemr.v8i02.11965

Bauza Castelló, J. D. (2015). El tratamiento de los suelos arcillosos con cal. Comportamiento mecánico y evolución a largo plazo ante cambios de humedad [Tesis doctoral, Universidad de Sevilla]. http://hdl.handle.net/11441/32957

Dhar, S. y Hussain, M. (2021). The strength and microstructural behavior of lime stabilized subgrade soil in road construction. International Journal of Geotechnical Engineering, 15(4), 471-483. https://doi.org/10.1080/19386362.2019.1598623 DOI: https://doi.org/10.1080/19386362.2019.1598623

Fondjo, A. A., Theron, E. y Ray, R. P. (2021). Stabilization of expansive soils using mechanical and chemical methods: a comprehensive review. Civil Engineering and Architecture, 9(5), 1295-1308. http://dx.doi.org/10.13189/cea.2021.090503 DOI: https://doi.org/10.13189/cea.2021.090503

Gómez Pérez, L. E., Guillin Acosta, W. F. y Gallardo Amaya, R. J. (2016). Variación de las propiedades mecánicas de suelos arcillosos comprensibles estabilizados con material cementante. Revista Tecnura, 20(Edición especial), 95-107. https://dialnet.unirioja.es/servlet/articulo?codigo=6371465

Guney, Y., Sari, D. Cetin, M. y Tuncan, M. (2007). Impact of cyclic wetting–drying on swelling behavior of lime-stabilized soil. Building and Environment, 42(2), 681-688. https://doi.org/10.1016/j.buildenv.2005.10.035 DOI: https://doi.org/10.1016/j.buildenv.2005.10.035

Higuera Sandoval, C. H., Gómez Cristancho, J. C. y Pardo Naranjo, O. E. (2012). Caracterización de un suelo arcilloso tratado con hidróxido de calcio. Revista Facultad de Ingeniería, UPTC, 21(32), 21-40. https://www.redalyc.org/pdf/4139/413940771003.pdf

Hungerbühler, D., Steinmann, M., Winkler, W., Seward, D., Egüez, A., Peterson, D. y Hammer, C. (2002). Neogene stratigraphy and Andean geodynamics of southern Ecuador. Earth-Science Reviews, 57(1-2), 75-124. https://doi.org/10.1016/S0012-8252(01)00071-X DOI: https://doi.org/10.1016/S0012-8252(01)00071-X

Instituto Ecuatoriano de Normalización. (1982a). Norma técnica ecuatoriana NTE INEN 687: Mecánica de suelos. Toma de muestras inalteradas (INEN 687).

Instituto Ecuatoriano de Normalización. (1982b). Norma técnica ecuatoriana NTE INEN 686: Mecánica de suelos. Toma de muestras alteradas (INEN 686)

Instituto Geológico, Minero y Metalúrgico (2017). Memoria Anual 2017. INGEMMET. https://acortar.link/ocKreq

Instituto Nacional de Vías (2013). Determinación de suelos expansivos (INVIAS INV E–132–13).

Kiran, Harsha, S., Raju, K. V. S. B. y Kumar, N. (2018). Experimental study on stabilization of Black Cotton soil with Molasses and Areca nut fibers. International Journal of Applied Engineering Research, 13(7), 219-223. https://acortar.link/yFR9pN

Kolias, S. Kasselouri-Rigopoulou, V. y Karahalios, A. (2005). Stabilisation of clayey soils with high calcium fly ash and cement. Cement and Concrete Composites, 27(2), 301-313. https://doi.org/10.1016/j.cemconcomp.2004.02.019 DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.019

Lin, B. y Cerato, A. B. (2012). Prediction of expansive soil swelling based on four micro-scale properties. Bulletin of Engineering Geology and the Environment, 71(1), 71-78. https://doi.org/10.1007/s10064-011-0410-7 DOI: https://doi.org/10.1007/s10064-011-0410-7

López-Lara, T., Hernández-Zaragoza, J. B., Horta-Rangel, J., Coronado-Márquez, A. y Castaño-Meneses, V. (2010). Polímeros para la estabilización volumétrica de arcillas expansivas. Revista Iberoamericana de Polímeros, 11(3), 159-168. https://reviberpol.org/wp-content/uploads/2019/07/2010-lopez.pdf

Majumder, M. y Venkatraman, S. (2022). Utilization of the lime as subgrade stabilizer in the pavement construction. Arabian Journal for Science and Engineering, 47, 4929-4942. https://doi.org/10.1007/s13369-021-06291-2 DOI: https://doi.org/10.1007/s13369-021-06291-2

Molina Villalobos, A. (2023). Determinación de parámetros de resistencia efectivos para arcillas expansivas. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 4(3), 1436-1447. https://doi.org/10.56712/latam.v4i3.1174 DOI: https://doi.org/10.56712/latam.v4i3.1174

Naciones Unidas. (2015). Transformar nuestro mundo: La Agenda 2030 para el Desarrollo Sostenible. https://acortar.link/137s

Navarro Mendoza, E. G., Alonso Guzmán, E. M., Ayala Ortega, L. A. y Sánchez Calvillo, A. (2022). Cal química para la estabilización de suelos arcillosos. SIACOT 2022: Seminario Iberoamericano de Arquitectura y Construcción con Tierra, (pp. 127-132). Red PROTERRA. https://acortar.link/TV88rI

Núñez del Arco Andrade, A. E. (2003). Geología del Ecuador. Cámara Ecuatoriana del Libro – Núcleo de Pichincha.

Ospina-García, M. A., Chaves-Pabón, S. B. y Jiménez-Sicachá, L. M. (2020). Mejoramiento de subrasantes de tipo arcilloso mediante la adición de escoria de acero. Revista de Investigación, Desarrollo e Innovación, 11(1), 185-196. https://doi.org/10.19053/20278306.v11.n1.2020.11692 DOI: https://doi.org/10.19053/20278306.v11.n1.2020.11692

Quintero-Lemus, L. J. y Gallardo-Amaya, R. J. (2015). Caracterización mineralógica de arcillas expansivas con fines de estabilización. Revista Ingenio, 8(1), 72-81. https://revistas.ufps.edu.co/index.php/ingenio/article/view/2050

Pandey, A. y Rabbani, A. (2017). Stabilisation of Pavement Subgrade Soil Using Lime and Cement: Review. International Research Journal of Engineering and Technology (IRJET), 4(4), 5733–5735. https://acortar.link/YGImX8

Rivera, J. F., Aguirre-Guerrero, A., Mejía de Gutiérrez, R. y Orobio, A. (2020). Estabilización química de suelos – Materiales convencionales y activados alcalinamente (revisión). Informador Técnico, 84(2), 202-226. https://doi.org/10.23850/22565035.2530 DOI: https://doi.org/10.23850/22565035.2530

Stavridakis, E. I. (2006). Assessment of anisotropic behaviour of swelling soils on ground and construction work. En A. Ali Al-Rawas y M. F. A. Goosen (eds.), Expansive soils: recent advances in characterization and treatment (pp. 371-384). Taylor & Francis/Balkema. https://acortar.link/V1t2OQ DOI: https://doi.org/10.1201/9780203968079.pt7

Verdezoto Villacis, P. A. (2006). Levantamiento geológico del sector comprendido entre las latitudes 2º37' S y 2º50' S, provincias del Cañar y Azuay, con especial enfoque sobre las secuencias miocénicas [Proyecto de Titulación, Escuela Politécnica Nacional, Quito, Ecuador]. http://bibdigital.epn.edu.ec/handle/15000/264

Published

2025-02-05

How to Cite

Ortiz Viñán, A. P., & Guanín Vásquez, J. C. (2025). Soil improvement through chemical substitution: A case study of the Azogues - El Descanso motorway (Ecuador). European Public & Social Innovation Review, 10, 1–19. https://doi.org/10.31637/epsir-2025-1233

Issue

Section

Humanism and Social Sciences