Study of the variation of octane rating by blending extra, super and octane-boosting additive in Ecuador

Authors

DOI:

https://doi.org/10.31637/epsir-2025-1388

Keywords:

Fuel mixture, Octane, FTIR, Octanometer, 95-RON gasoline, Gasoline 85-RON, Gasoline 87-RON, Ecuador

Abstract

Introduction: The use of gasoline worldwide continues to grow, impacting the economy and geopolitics. In Ecuador, gasoline is marketed with different RON: Extra (85), Eco País (87) and Super (95). The octane variation of gasoline blends and the addition of octane-enhancing additives were evaluated. Methodology: The experiments were conducted at the Esmeraldas State Refinery using a spark type Octanometer, three types of samples were considered: blends of Extra with Super, Eco País with Super, and Extra with additives, the information obtained was added to the database of the FTIR method to identify the RON in a faster and more accurate way. Results: The FTIR results were 99% consistent with the Octanometer. Gasoline blends showed variations in RON, while the addition of additives to 85-RON gasoline only increased RON by 1.9 in one case. Discussion: Although this work is not comparable to others, due to the characteristics of gasoline in Ecuador, we believe it is necessary to move on to the study of the different blends by measuring other parameters such as MON and oxygenated compounds. Conclusions: The fuel blends in different blends provide a technical alternative for the consumer. In addition, the rapid analysis test was improved with a curve consistent with the spark octanometer method.

Downloads

Download data is not yet available.

Author Biographies

Grace Morillo Chandi, Central University of Ecuador

Chemical Engineer with more than ten years of experience in the oil industry, specializing in the areas of operations, production, quality and supply chain management. She has held positions such as Assistant Manager of Refining Operations and Production Planning and Scheduling Specialist at EP-Petroecuador. Currently, she is a professor at the Faculty of Chemical Engineering at the Central University of Ecuador. She holds a Master's Degree in Administration and Organizational Management and is pursuing a PhD in Education and Innovation. She has completed various continuing education courses, including Design Thinking and Digital Transformation, and has skills in technical and administrative problem solving, leadership and execution of investment projects.

Morayma Muñoz, University of Alicante

Chemical Engineer with a master's degree in Chemical Engineering from the University of Alicante and a PhD student at the same University. Professionally, she has worked in an office with more than fourteen chemical engineering projects since 2018, also as a teacher of Transport Phenomena at the Faculty of Chemical Engineering of the Central University of Ecuador, she has participated in three research projects at the University. As a researcher, he has studied the use of analytical pyrolysis for the characterization of secondary raw materials from agro-industrial waste, and the analysis and study of SBA and P123 using different techniques; kinetic studies of thermal reactions using kinetic models, exploring the potential of these materials as value-added materials.

Luis Miguel Freire Cárdenas, Empresa de Hidrocarburos del Ecuador – EP Petroecuador

Chemical Engineer, Master in Safety, Industrial and Environmental Hygiene, with 11 years of experience in the industry, his career covers the hydrocarbon value chain and energy generation. He has led work teams in refining center operations, business strategic planning, cost evaluation and financial control. Among his achievements, he has supervised projects for the implementation of comparative performance evaluations and benchmarking, evaluating the performance of organizations and the impact of projects according to international methodologies. His passion for technical research has led him to specialize in experimental design and data analysis. He is committed to innovation and process optimization to ensure compliance with the highest quality standards.

Marco Rosero Espín, Central University of Ecuador

Chemical Engineer with a Master's degree in Chemical Engineering from the Polytechnic University of Madrid, he has submitted the doctoral thesis prior to obtaining the title of Doctor in Chemical Engineering from the University of Alicante. He has been Director of the Chemical Engineering Degree and Subdean of the same Faculty, and is currently Director of the GIIP research group. He has written three books, four scientific articles, has two patent registrations, four copyrights, directed two research projects and won second and third place in the Universidad Central award in 2020 and 2021. Professionally, he worked for EP Petroecuador from 2008 to 2015, and also heads an office with more than fourteen chemical engineering projects since 2010.

References

Abdul-Manan, A. F. N., Kalghatgi, G. y Babiker, H. (2018). Exploring Alternative Octane Specification Methods for Improved Gasoline Knock Resistance in Spark-Ignition Engines. Frontiers in Mechanical Engineering, 4(20), 1-13. https://doi.org/10.3389/fmech.2018.00020 DOI: https://doi.org/10.3389/fmech.2018.00020

Arboleda, M. y Hernández, M. (2023). Análisis del nivel de octanaje en combustibles comercializados en Ecuador y su repercusión en el desempeño del MCI [Tesis de grado]. https://repositorio.utn.edu.ec/bitstream/123456789/14054/1/04%20MAUT%20232%20TRABAJO%20DE%20GRADO.pdf

Astm, D. (2019). D2700-19: Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel. Book of Standards Volume: 05.05, 05.05(C), pp. 1-51.

Astm, D. (2021). D2699-21 standard test method for research octane number of spark-ignition engine fuel. American Society for Testing and Materials (ASTM).

Beltrán, R. J. A. (2020). Análisis del uso de diferentes tipos de gasolinas y aditivos en la vida útil de algunos elementos de un motor de combustión interna. ISTCT / Revista Investigación Tecnológica, 2(1), 1-9. https://www.investigacionistct.ec/ojs/index.php/investigacion_tecnologica/article/view/35/51

Benavides, A., Zapata, C., Benjumea, P., Franco, C. A., Cortés, F. B. y Ruiz, M. A. (2023). Predicting Octane Number of Petroleum-Derived Gasoline Fuels from MIR Spectra, GC-MS, and Routine Test Data. Processes, 11(5), 1-15. https://doi.org/10.3390/pr11051437 DOI: https://doi.org/10.3390/pr11051437

Castillo Rivera, E., Mora Díaz, L., Gutiérrez Gualotuña, E., Martínez Valdéz, O., Tafur Escanta, P., Soria Amancha, A., Villavicencio Poveda, Á., Torres Rodríguez, G. y Baldeón López, R. (2019). Análisis, estudio y modelamiento matemático para la caracterización energética de las gasolinas comerciales en función de los parámetros de calidad referentes a las normas ASTM. Aporte Santiaguino, 12(1), 122-137. https://doi.org/10.32911/as.2019.v12.n1.612 DOI: https://doi.org/10.32911/as.2019.v12.n1.612

Compass Instrument. (2019). Waukesha CFR F1/F2 Octane Taring Engine with XCP technology. CFR. https://cfrengines.com/wp-content/uploads/2019/08/FORM-C625-CFR-F12-brochure-7-23-19.pdf

Dago-Morales, A., Fernández, R. F., Martínez, M. D. R., Moure, M. B., Noa, M. L., Echavarría, J. E. R., de Zayas, M. O. y Armada, L. S. (2006). La espectroscopia infrarroja y el método de calibración multivariada de mínimos cuadrados parciales en la predicción del índice de octano experimental de gasolinas. Revista CENIC. Ciencias Químicas, 37(1), 3-7. https://doi.org/http://www.redalyc.org/articulo.oa?id=181620524001

Dauphin, R., Obiols, J., Serrano, D., Fenard, Y., Comandini, A., Starck, L. y Chaumeix, N. (2019). Using RON synergistic effects to formulate fuels for better fuel economy and lower CO2 emissions (No. 2019-01-2155). SAE Technical Paper. https://doi.org/10.4271/2019-01-2155 DOI: https://doi.org/10.4271/2019-01-2155

Demirbas, A., Balubaid, M. A., Basahel, A. M., Ahmad, W. y Sheikh, M. H. (2015). Octane Rating of Gasoline and Octane Booster Additives. Petroleum Science and Technology, 33(11), 1190-1197. https://doi.org/10.1080/10916466.2015.1050506 DOI: https://doi.org/10.1080/10916466.2015.1050506

Díaz, C. J. (2015). Aplicación de la técnica de análisis de espectroscopía infrarrojo por transformada de Fourier para la determinación de los valores de RON y MON en naftas [Tesis de licenciatura, Universidad de Belgrano]. http://repositorio.ub.edu.ar/handle/123456789/6083

Guzmán, A. R., Cueva, E., Peralvo, A., Revelo, M. y Armas, A. (2018). Estudio del rendimiento dinámico de un motor Otto al utilizar mezclas de dos tipos de gasolinas: “Extra” y “Súper”. Enfoque UTE, 9(4), 208-220. https://doi.org/10.29019/enfoqueute.v9n4.335 DOI: https://doi.org/10.29019/enfoqueute.v9n4.335

Hadi, A. S., Ahmed, O. K. y Ali, O. M. (2020). Enhancement of Gasoline Fuel Quality with Commercial Additives to Improve Engine Performance. IOP Conference Series: Materials Science and Engineering, 745(012065), pp. 1-11. https://doi.org/10.1088/1757-899X/745/1/012065 DOI: https://doi.org/10.1088/1757-899X/745/1/012065

Katon, J. E. (2001). Book Reviews: Fourier Transform Infrared Spectroscopy. VoI 1. Applications to Chemical Systems. En Journal of Herpetological Medicine and Surgery, 11(2), 34-34. https://doi.org/10.5818/1529-9651.11.2.34 DOI: https://doi.org/10.5818/1529-9651.11.2.34

Muhammed, T., Tokay, B. y Conradie, A. (2023). Raising the Research Octane Number using an optimized Simulated Moving Bed technology towards greater sustainability and economic return. Fuel, 337, 1-9. https://doi.org/10.1016/j.fuel.2022.126864 DOI: https://doi.org/10.1016/j.fuel.2022.126864

Nepas Guanulema, B.E., Felix Pacheco, O. R., Guanulema Nepas, A. R. y Reyes Campaña, G. G. (2023). Estudio de consumo usando mezclas de aditivos y combustibles locales en ciclos combinados a 2800 msnm. Business and Entrepreneurial Studies, 7(2), 65-79. https://doi.org/10.37956/jbes.v7i2.332 DOI: https://doi.org/10.37956/jbes.v7i2.332

PAC. (2017). OptiFuel: Precision and portability in a top-of-the-line FTIR Fuel Analyzer. https://www.paclp.com/tenants/pac/documents/optifuel%20brochure%20a4%20rev%205.pdf

Palencia, Z. F. D., Folgueras Díaz, M. B. y Gómez Cuenca, F. (2013). Influencia de los Aditivos Oxigenados sobre las Propiedades de las Gasolinas [Tesis de grado, Universidad de Oviedo]. http://hdl.handle.net/10651/27919

Saleh, S. M. y Al-Azzawi, A. G. S. (2023). Optimizing Bioethanol Production for High Octane Bioethanol-Gasoline Blended Fuel through Fermentation. Journal of the Turkish Chemical Society, Section A: Chemistry, 10(2), 475-486. https://doi.org/10.18596/jotcsa.1250955

Sayin, C., Kilicaslan, I., Canakci, M. y Ozsezen, N. (2005). An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions. Applied Thermal Engineering, 25(8-9), 1315-1324. https://doi.org/10.1016/j.applthermaleng.2004.07.009 DOI: https://doi.org/10.1016/j.applthermaleng.2004.07.009

Shankar, V. S. B., Li, Y., Singh, E. y Sarathy, S. M. (2021). Understanding the synergistic blending octane behavior of 2-methylfuran. Proceedings of the Combustion Institute, 38(4), 5625-5633. https://doi.org/10.1016/j.proci.2020.06.277 DOI: https://doi.org/10.1016/j.proci.2020.06.277

Sharif, A. (2010). Selective Additives for Improvement of Gasoline Octane Number. Tikrit Journal of Engineering Sciences, 17(2), 22-35. https://doi.org/10.25130/tjes.17.2.03 DOI: https://doi.org/10.25130/tjes.17.2.03

Szybist, J. P., Busch, S., McCormick, R. L., Pihl, J. A., Splitter, D. A., Ratcliff, M. A., Kolodziej, C. P., Storey, J. M. E., Moses-DeBusk, M., Vuilleumier, D., Sjöberg, M., Sluder, C. S., Rockstroh, T. y Miles, P. (2021). What fuel properties enable higher thermal efficiency in spark-ignited engines? Progress in Energy and Combustion Science, 82(100876), 1-54. https://doi.org/10.1016/j.pecs.2020.100876 DOI: https://doi.org/10.1016/j.pecs.2020.100876

Terneus Páez, C.F., Cabrera Mera, A.G. y Grandes Villamarín, R.D. (2021). Impact Analysis of Migration from Súper Gasoline to Others of Lower Octane Number in Ecuador. En M. Botto Tobar, H. Cruz y A. Díaz Cadena (Eds.), Recent Advances in Electrical Engineering, Electronics and Energy. CIT 2020 (Vol. 763). Springer. https://doi.org/10.1007/978-3-030-72212-8_8 DOI: https://doi.org/10.1007/978-3-030-72212-8_8

Twu, C. H., y Coon, J. E. (1998). A generalized interaction method for the prediction of octane numbers for gasoline blends. Simulation Sciences Inc, 601. https://api.semanticscholar.org/CorpusID:16465119

Wang, C., Zeraati-Rezaei, S., Xiang, L. y Xu, H. (2017). Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain. Applied Energy, 191, 603-619. https://doi.org/10.1016/j.apenergy.2017.01.081 DOI: https://doi.org/10.1016/j.apenergy.2017.01.081

Wen, M., Yin, Z., Zheng, Z., Liu, H., Zhang, C., Cui, Y., Ming, Z., Feng, L., Yue, Z. y Yao, M. (2022). Effects of Different Gasoline Additives on Fuel Consumption and Emissions in a Vehicle Equipped With the GDI Engine. Frontiers in Mechanical Engineering, 8, 1-10. https://doi.org/10.3389/fmech.2022.924505 DOI: https://doi.org/10.3389/fmech.2022.924505

Published

2025-01-29

How to Cite

Morillo Chandi, G., Muñoz, M., Freire Cárdenas, L. M., & Rosero Espín, M. (2025). Study of the variation of octane rating by blending extra, super and octane-boosting additive in Ecuador. European Public & Social Innovation Review, 10, 1–18. https://doi.org/10.31637/epsir-2025-1388

Issue

Section

MISCELLANEOUS