Benefits and Limitations for Salvadoran University Teachers and Students on the Use of AI in Teaching-Learning Processes
DOI:
https://doi.org/10.31637/epsir-2024-368Keywords:
Artificial Intelligence, education, teaching, processes, learning, benefits, limitation, ethicsAbstract
Introduction: The study examines the benefits and limitations perceived by Salvadoran university teachers and students on the use of artificial intelligence (AI) in teaching-learning processes. Methodology: A mixed methodology was used with interviews to 5 teachers and questionnaires to 673 students from 20 Salvadoran universities. Results: The results indicate that most of them have a basic knowledge of AI tools such as ChatGPT and Copilot. Perceptions are predominantly positive, although there are concerns about ethical-academic integrity and the need for training. Discussion: The need for a balanced approach that maximises the benefits of AI and mitigates its risks is highlighted, suggesting future research to explore improvements in higher education. Conclusions: AI has great potential, but it is critical to address current limitations and promote thoughtful and careful implementation in university education.
Downloads
References
Arroyo, M. y Merlino, I. (2008). Metodología de la investigación social. https://bit.ly/3XTfb2t
Creswell, J. (2013). Introducción y Enfoque del Estudio. https://bit.ly/4cly2Yx
Fraga-Varela, F. y Rodríguez-Groba, A. (2020). Realidad virtual y aumentada e inteligencia artificial aplicadas a la formación universitaria. Education in the Knowledge Society, 21, 15. https://doi.org/10.14201/eks.23537
Göschlberger, B. (2021). Acceptance Models for Intelligent Tutoring Systems. In D. Ifenthaler, y J. Y. K. Yau (Eds.), Utilizing Learning Analytics to Support Study Success (pp. 153-169). https://bit.ly/3W9ROR4
Hernández-Sampieri, R. y Mendoza Torres, C. P. (2018). Metodología de la Investigación. La rutas cualitativa, cuantitativa y mixta. Mc Graw Hill Education
Hernández Sampieri et al. (2014). Metodología de la investigación (6a ed.). McGraw-Hill.
Lavicza, Z., Baranyi, P., Hohenwarter, M., Jones, K. y Kortenkamp, U. (2022). Teachers’ perceptions and acceptance of automated technology in education. British Journal of Educational Technology, 53(1), 149-163. https://doi.org/10.1111/bjet.13162
Liu, D., Geertshuis, S. y Grainger, R. (2022). Understanding academics' adoption of learning technologies: A systematic review. Computers & Education, 172, 104259. https://doi.org/10.1016/j.compedu.2021.104259
Luckin, R., Holmes, W., Griffiths, M. y Forcier, L. B. (2016). Intelligence Unleashed: An argument for AI in Education. Pearson. https://bit.ly/3KbhGW4
Martínez, F., Hinojo, M. A., y Aznar, I. (2020). Percepción de los docentes sobre el impacto de la Inteligencia Artificial en educación superior. Revista Espacios, 41(3), 11-20. https://acortar.link/SC1sdS
MINED (2023). Estadísticas educativas. https://bit.ly/4crtP5N
Moreno-Guerrero, A. J., Lopez-Belmonte, J., Marín-Marín, J. A., y Soler-Costa, R. (2020). E-Learning in Higher Educational Institutions: A Bibliometric Analysis. Social Sciences, 9(12), 231. https://doi.org/10.3390/socsci9120231
Nwana, H. S. (1990). Intelligent tutoring systems: an overview. Artificial Intelligence Review, 4, 251–277. https://doi.org/10.1007/BF00155578
Papamitsiou y Economides. (2014). Learning Analytics and Educational Data Mining in Practice: A Systematic Literature Review of Empirical Evidence. Educational Technology & Society 17(4), 49-64.
Portillo Peñuelas, A. B. (2020). La inteligencia artificial en la educación superior, la nueva materia pendiente. RIED. Revista Iberoamericana de Educación a Distancia, 24(1), 331-350. https://doi.org/10.5944/ried.24.1.26455
Rivas M., Suárez-Alemán, A. y Serebrisky, T. (2010) Hechos estilizados de transporte urbano en América Latina y el Caribe. IDB. http://dx.doi.org/10.18235/0001606
Roll, I. y Wylie, R. (2016). Evolution and Revolution in Artificial Intelligence in Education. International Journal of Artificial Intelligence in Education, 26(2), 582-599. https://doi.org/10.1007/s40593-016-0110-3
Sáez López, J. M. (2020). Posibilidades educativas de la Inteligencia Artificial en la educación superior. Revista Iberoamericana de Educación a Distancia, 24(1), 195-211. https://doi.org/10.5944/ried.24.1.26566
Taylor, S. J. y Bogdan, R. (1986). Introducción a los métodos cualitativos: La búsqueda de significados. Paidós
Ugalde Binda, N. y Balbastre-Benavent, F. (2013). Investigación cuantitativa e investigación cualitativa: Buscando las ventajas de las diferentes metodologías de investigación. Revista de Ciencias Económicas, 31(2), 179-187. Universidad de Costa Rica. https://acortar.link/HQazk0
Volungevičienė, A., Brown, M., Greenspon, R., Gaebel, M. y Morrisroe, A. (2021). Developing a high-performance digital education ecosystem: Institutional self-assessment instruments. European University Association. https://shre.ink/DLrP
Zawacki-Richter, O., Marín, V. I., Bond, M. y Gouverneur, F. (2019). Education of the future? Blended learning with artificial intelligence. Digital Transformations, University Publication. https://shre.ink/DLrz
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Armando Briñis Zambrano, David Alberto Quintana Pérez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).