Data analysis strategy in digital environments: evaluating teacher activity

Authors

DOI:

https://doi.org/10.31637/epsir-2024-369

Keywords:

Teacher evaluation, data analysis, knowledge management, educational quality, educational technology, decision making, educational innovations, higher education

Abstract

Introduction: This article addresses the lack of analytical tools for evaluating teacher performance in Learning Management Systems such as Moodle, despite their ability to monitor student progress. Methodology: It describes the implementation of a data visualization strategy through direct database queries of Moodle and the use of business intelligence tools such as Metabase, Access, and Power BI. This enables the creation of customized reports on teacher-student interactions. Results: The development of these reports has enhanced the daily work of teachers on educational platforms and provided educational institutions with a valuable tool for analyzing and improving teaching processes. Discussions: The need to adapt educational technology for evaluating teacher performance is discussed, emphasizing the importance of these tools in the continuous improvement of educational quality. Conclusions: The implementation of advanced data visualization in LMS is crucial for optimizing higher education, enriching the educational experience, and strengthening institutional capabilities in response to the challenges of modern learning.

 

Downloads

Download data is not yet available.

Author Biographies

Lourdes Segovia García, Corporación Universitaria de Asturias

Degree in Industrial Engineering from the University of Salamanca. Member of the Sinergia Digital research group. Online lecturer at the University Corporation of Asturias and the European Graduate Institute. She holds the position of academic director at the European Graduate Institute. Currently, she is an applicant for a PhD in Industrial Technologies Research at the Universidad Nacional de Educación a Distancia and a PhD in Education at the Universidad Europea de Monterrey.

Nuria Segovia-García, Corporación Universitaria de Asturias

PhD in Education from the International University of La Rioja and Degree in Pedagogy from the University of Salamanca. Member of the Sinergia Digital research group. Director of the Master's Degree in Education and Digital Pedagogical Development at the European Graduate Institute and the Master of Education in Instructional Design and Technology at SUMMA University. She has published more than 15 peer-reviewed articles in academic journals and has written more than 30 book chapters resulting from research. Currently, she is a PhD candidate in Administrative Sciences at the European University of Monterrey.

References

Agusriandi, E., Syarif, I. & Samad, I. S. (2022). Model analisis aktivitas tutor dalam learning management system berdasarkan data log menggunakan k-means dan deteksi outlier. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 9(4), 709-716. https://doi.org/10.25126/jtiik.202294764

Álvarez Silva, L. A., Herrera López, P. S., Lániz Vargas, C. A. & González Zhagñay, J. O. (2022). Estrés laboral docente, e-learning y tiempos de COVID-19. PODIUM, 41, 105-118. https://doi.org/10.31095/podium.2022.41.7

Antony, J., Ghadge, A., Ashby, S. A., & Cudney, E. A. (2018). Lean Six Sigma journey in a UK higher education institute: a case study. International Journal of Quality & Reliability Management, 35(2), 510–526. https://doi.org/10.1108/ijqrm-01-2017-0005

Aryan, M. & Utama, D. N. (2021). Decision Support Model for Evaluating the Performance of Tutor’s Teaching using Moodle. International Journal of Emerging Technology and Advanced Engineering, 11(9), 1-11. https://doi.org/10.46338/ijetae0921_01

Baig, M. I., Shuib, L., & Yadegaridehkordi, E. (2020). Big data in education: a state of the art, limitations, and future research directions. International Journal of Educational Technology in Higher Education, 17(1). https://doi.org/10.1186/s41239-020-00223-0

Cabanach, R., Souto-Gestal, A., y Franco, V. (2016). Escala de estresores académicos para la evaluación de los estresores académicos en estudiantes universitarios. Revista Iberoamericana de Psicología y Salud, 7(2), 41-50. https://doi.org/10.1016/j.rips.2016.05.001

Chatti, M.A., Muslim, A., Schroeder, U. (2017). Toward an Open Learning Analytics Ecosystem. En Kei Daniel, B. (eds) Big Data and Learning Analytics in Higher Education. Springer, Cham. https://doi.org/10.1007/978-3-319-06520-5_12

Dobashi, K., Ho, C. P., Fulford, C. P., Grace Lin, M. F. & Higa, C. (2022). Learning pattern classification using moodle logs and the visualization of browsing processes by time-series cross-section. Computers and Education: Artificial Intelligence, 3, 100105. https://doi.org/10.1016/j.caeai.2022.100105

Esarey, J.; Valdes, n. (2020). Unbiased, reliable, and valid student evaluations can be still unfair. Assessment and Evaluation in higher Education. https://doi.org/10.1080/02602938.2020.1724875

Guzmán Rincón, A., Barragán Moreno, S., Cala-Vitery, F., & Segovia-García, N. (2022). Dropout in Rural Higher Education: Analysis of Causes from Systemic Thinking. Qualitative Research in Education, 11(2), 118–150. https://doi.org/10.17583/qre.10048

Ji, Y. P., Marticorena-Sanchez, R., Pardo-Aguilar, C., Lopez-Nozal, C. & Juez-Gil, M. (2022). Activity and Dropout Tracking in Moodle Using UBUMonitor Application. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 17(3), 307-317. https://doi.org/10.1109/rita.2022.3191279

Li, Q., Duffy, P. & Zhang, Z. (2022). A Novel Multi-Dimensional Analysis Approach to Teaching and Learning Analytics in Higher Education. Systems, 10(4), 96. https://doi.org/10.3390/systems10040096

Llorent-Bedmar, V. & Cobano-Delgado, V. (2019). Análisis crítico de las encuestas universitarias de satisfacción docente. Revista de Educación, 385, 91-117. https://doi.org/10.4438/1988-592X-RE-2019-385-418

Maldonado-Mahauad, J., Aguilar, B. & Sigua, E. (2021). FlipMyLearning: A Tool for Monitoring and Predicting Learner Behavior in Moodle. 2021 XVI Latin American Conference on Learning Technologies (LACLO). https://doi.org/10.1109/laclo54177.2021.00010

Metabase (s. f.). Business Intelligence, Dashboards, and Data Visualization. https://www.metabase.com/docs/latest/

MOODLE. (2021). Moodle statistics. https://stats.moodle.org/

Moreno, D. R. G., Leal, J. A. S., & Bocanegra-Herrera, C. (2019). Revisión de la implementación de lean six sigma en instituciones de educación superior. Ingeniare: Revista Chilena De Ingenieria, 27(4), 652-667.

Muslim, A., Chatti, M. A., Bashir, M. B., Barrios Varela, O. E. & Schroeder, U. (2018). A Modular and Extensible Framework for Open Learning Analytics. Journal of Learning Analytics, 5(1). https://doi.org/10.18608/jla.2018.51.7

Olarte, Y.J. & Cruz, M. R. (2022). Revisión de algoritmos de Big Data aplicados a la

plataforma educativa Moodle. Serie Científica de la Universidad de las Ciencias Informáticas, 15(5), 57-69

Pérez-Sanagustín, M., Pérez-Álvarez, R., Maldonado-Mahauad, J., Villalobos, E. & Sanza, C. (2022). Designing a Moodle Plugin for Promoting Learners’ Self-regulated Learning in Blended Learning. Lecture Notes in Computer Science, 324-339. https://doi.org/10.1007/978-3-031-16290-9_24

Pito, D., Moreno, E., & Becerra, M. (2020). Bodega de datos con alta capacidad de analisis para el desempeno academico de Universidades/Data warehouse with high capacity for analysis for the academic performance of Universities. Investigación E Innovación En Ingenierías, 8(3), 102.

Rizo Rodríguez, M. (2020). Rol del docente y estudiante en la educación virtual. Revista Multi-Ensayos, 6(12), 28-37. https://doi.org/10.5377/multiensayos.v6i12.10117

Román Mendoza, E. (2020). La evaluación del profesorado universitario en tiempos de pandemia: los sistemas online de gestión de encuestas de satisfacción estudiantil. Campus Virtuales, 9(2), 61-70.

Sánchez Macías, A. & Castañeda Santillán, L. L. (2022). Satisfacción laboral y burnout en personal docente. Retos, 12(24), 230-246. https://doi.org/10.17163/ret.n24.2022.03

Segovia-García, N. y Said-Hung, E.M. (2021). Factores de satisfacción de los alumnos en e-learning en Colombia. Revista Mexicana de Investigación Educativa, 26(89), 595-621. https://cutt.ly/LbUPghi

Segovia-García, N., Said-Hung, E., & García Aguilera, F. J. (2022). Educación superior virtual en Colombia: factores asociados al abandono. Educación XX1, 25(1), 197–218. https://doi.org/10.5944/eduxx1.30455

Sigua, E., Aguilar, B., Pesantez-Cabrera, P., & Maldonado-Mahauad, J. (2020). Proposal for the Design and Evaluation of a Dashboard for the Analysis of Learner Behavior and Dropout Prediction in Moodle. Proceedings of the 15th Latin American Conference on Learning Technologies. LACLO 2020. https://doi.org/10.1109/LACLO50806.2020.9381148

Syahputra, Y. H. & Hutagalung, J. (2022). Superior Class to Improve Student Achievement Using the K-Means Algorithm. SinkrOn, 7(3), 891-899. https://doi.org/10.33395/sinkron.v7i3.1145

Tejada-Escobar, F., Murrieta-Marcillo, R., Villao-Santos, F., & Garzón-Balcázar, J. (2018). Big Data en la Educación: Beneficios e Impacto de la Analítica de Datos. Revista Científica y Tecnológica UPSE, 5(2), 80–88. https://doi.org/10.26423/rctu.v5i2.424

Veliz-Briones, V. F., Alonso-Becerra, A., Fleitas-Triana, M. S. & Alfonso-Robaina, D. (2016). Una gestión universitaria basada en los enfoques de gestión de proyecto y por proceso. Revista Electrónica Educare, 20(3), 1. https://doi.org/10.15359/ree.20-3.23

Xin, X., Shu-Jiang, Y., Nan, P., ChenXu, D. & Dan, L. (2022). Review on A big data-based innovative knowledge teaching evaluation system in universities. Journal of Innovation & Knowledge, 7(3), 100197. https://doi.org/10.1016/j.jik.2022.100197

Zanotti, A., & Pagola, L. I. (2020). Potencialidades y límites para el análisis de datos de sistemas de gestión de aprendizaje. El caso de Moodle. Transdigital, 3(6), 1–23. https://doi.org/10.56162/transdigital145

Published

2024-07-24

How to Cite

Segovia García, L., & Segovia-García, N. (2024). Data analysis strategy in digital environments: evaluating teacher activity. European Public & Social Innovation Review, 10, 1–20. https://doi.org/10.31637/epsir-2024-369

Issue

Section

Innovation