A collaborative study on the development of assessment resources with automatic feedback for the teaching of Mathematics

Authors

DOI:

https://doi.org/10.31637/epsir-2024-374

Keywords:

mathematics education, teaching, errors, assessment for learning, automatic feedback;, teacher training, interactions between teachers, digital technologies

Abstract

This article presents the results of a project developed with twelve teachers from Portuguese-speaking countries: Brazil, Portugal and Cape Verde, for an online training, with proposals for the creation of assessment resources with automatic feedback, with the use of digital technologies, for the learning of mathematics. We tried to identify which strategies were necessary to accompany this training and the interactions between teachers for the construction of resources. Methodology: The study, of a qualitative nature, was developed in a dynamic guided by an active and collaborative participation in practical and theoretical activities, stimulating this association and the manipulation and analysis of problem-situations. Results: Three key strategies were identified: joint planning, the use of collaborative digital tools, and constant peer feedback. Teachers reported an increase in the quality of the resources created and an improvement in their own professional training. Positive interactions were observed that promoted a collaborative learning environment. Discussion: The results of this experience coincide with previous studies that highlight the importance of teacher collaboration. Joint planning allowed for greater consistency in educational resources by involving aspects of automatic feedback, while digital tools facilitated remote collaboration.

Downloads

Download data is not yet available.

Author Biographies

José Manuel Dos Santos Dos Santos, University of Coimbra

Invited Assistant Professor of the Department of Mathematics of the Faculty of Science and Technology of the University of Coimbra. PhD in Computational Algebra (2019) from the Universidad Abierta, with a Master's Degree in Teaching Mathematics (2000).

Celina Aparecida Almeida Pereira Abar, Pontifícia Universidade Católica de São Paulo

Full Professor of the Pontificia Universidad Católica de São Paulo del Programa de Pósgrado en Educación Matemática de la PUC-SP. PhD in Mathematical Logic from the Pontificia Universidad Católica de São Paulo (1985).

abarcaaap@pucsp.br

Índice H: 10

ID de Orcid: https://orcid.org/0000-0002-6685-9956

ID de Scopus: 56030661600

Google Académico: https://scholar.google.com.br/citations?hl=pt-BR&user=yFVU6fwAAAAJ

Puerta de investigación: J-1240-2014

Academia.edu: https://pucsp.academia.edu/CelinaAbar

Marcio Vieira de Almeida, Pontifícia Universidade Católica de São Paulo

Visiting Professor in the PROFMAT Program of the Federal Institute of Education, Science and Technology of São Paulo (IFSP). Degree in Mathematics from the University of São Paulo (2009). PhD in Mathematics Education from the Pontificia Universidad Católica de São Paulo (2017).

References

Abar, C. A.A.P., Santos, J. M. S. y Almeida, M. V. (2021). Computational Thinking in Basic School in the Age of Artificial Intelligence: Where is the Teacher? Revista Acta Scientiae, 23, 270-299. http://dx.doi.org/10.17648/acta.scientiae.6869 DOI: https://doi.org/10.17648/acta.scientiae.6869

Abar, C. A.A.P., Santos, J. M. S. y Almeida, M.V. (2022). O GeoGebra como estratégia para ensino remoto: Criando atividades com feedback automático. Sensos-e, 9(2), 79–94. https://doi.org/10.34630/sensose.v9i2.4249

Almeida, F. J. y Franco, M. G. (2011). Avaliação para a aprendizagem: o processo avaliativo para melhorar o desempenho dos alunos. Ática Educadores.

Astolfi, J. P. (2003). El “error”, un medio para Enseñar (2ª ed.). Dia da Editora.

Barana, A., Fissore, C. y Marchisio, M. (2020). From standardized assessment to automatic formative assessment for adaptive teaching. Proceedings of the 12th International Conference on Computer Supported Education. 12th International Conference on Computer Supported Education, Prague, Czech Republic. https://dx.doi.org/10.5220/0009577302850296 DOI: https://doi.org/10.5220/0009577302850296

Brasil. Ministério da Educação. (2018). Base Nacional Comum Curricular. Brasília.

Brousseau, G. (2008). Introdução ao Estudo das Situações Didáticas: conteúdos e métodos de ensino. Ática.

Brousseau, G. (1976). Les obstacles épistémologiques et les problèmes en mathématiques. En W. Vanhamme y J. Vanhamme (Eds.). La problématique et l’enseignement de la mathématique (pp. 101-117). Louvain-la-Neuve. https://acortar.link/Ued0GL

Buckingham Shum, S., Lim, L.-A., Boud, D., Bearman, M. y Dawson, P. (2023). A comparative analysis of the skilled use of automated feedback tools through the lens of teacher feedback literacy. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00410-9 DOI: https://doi.org/10.1186/s41239-023-00410-9

Buriasco, R. L. C. y Soares, M. T. C. (2012). Avaliação de sistemas escolares: da classificação dos alunos à perspectiva de análise de sua produção matemática. En W. R. Valente (Org.). Avaliação em matemática: histórias e perspectivas atuais (pp. 101-142). Papirus.

Celik, I., Dindar, M., Muukkonen, H. y Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. TechTrends : For Leaders in Education & Training, 66(4), 616-630. https://doi.org/10.1007/s11528-022-00715-y DOI: https://doi.org/10.1007/s11528-022-00715-y

Cobb, P., Confrey, J., di Sessa, A., Lehrer, R. y Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9-13. https://doi.org/10.3102/0013189X032001009 DOI: https://doi.org/10.3102/0013189X032001009

Cury, H. N. (2007). Análise de erros: o que podemos aprender com as respostas dos alunos. Editora Autêntica.

De Angelis, M. y Miranda, S. (2023). A personalized feedback system to support teacher training. Research on Education and Media, 15(1), 30-39. https://doi.org/10.2478/rem-2023-0005 DOI: https://doi.org/10.2478/rem-2023-0005

Deeva, G., Bogdanova, D., Serral, E., Snoeck, M. y De Weerdt, J. (2021). A review of automated feedback systems for learners: Classification framework, challenges and opportunities. Computers & Education, 162(104094), 104094. https://doi.org/10.1016/j.compedu.2020.104094 DOI: https://doi.org/10.1016/j.compedu.2020.104094

Dos Santos, J. M. D. S., Abar, C. A. A. P. y Almeida, M. V. de. (2022). Automatic feedback GeoGebra tasks – searching and opensource and collaborative intelligent interactive tutor. Proceedings of the World Multi-Conference on Systemics, Cybernetics and Informatics. 26th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, Florida, United States. https://doi.org/10.54808/WMSCI2022.03.77 DOI: https://doi.org/10.54808/WMSCI2022.03.77

Fernandes, D. (2009). Avaliar para aprender: fundamentos, práticas e políticas. Unesp.

Freitas, J. L. M. (2008). Teoria das Situações Didáticas. En S. D. A. Machado (Org.). Educação Matemática: uma (nova) introdução (pp. 77-111). EDUC.

Fundação Lemann y PREAL. (2009). Saindo da inércia? Boletim da Educação no Brasil. Fundação Lemann.

Grover, S. y Pea, R. (2018). Computational thinking: a competency whose time has come. En S. Sentance, E. Barendsen, y C. Schulte (Eds.). Computer science education: perspectives on teaching and learning in school (pp. 19-37). Bloomsbury Academic. DOI: https://doi.org/10.5040/9781350057142.ch-003

Hickmott, D., Prieto-Rodriguez, E. y Holmes, K. (2018). A scoping review of studies on computational thinking in K–12 mathematics classrooms. Digital Experiences in Mathematics Education, 4, 48-69. https://doi.org/10.1007/s40751-017-0038-8 DOI: https://doi.org/10.1007/s40751-017-0038-8

Hoffmann, J. (2013). Avaliação: mito & desafio, uma perspectiva construtivista (43ª ed.). Mediação.

Lu, J. J. y Fletcher, G. H. L. (2009). Thinking about computational thinking. SIGCSE Bulletin Inroads, 41(1), 260-264. http://dx.doi.org/10.1145/1539024.1508959 DOI: https://doi.org/10.1145/1539024.1508959

Kallia, M., Van Borkulo, S. P., Drijvers, P., Barendsen, E. y Tolboom, J. (2021). Characterising computational thinking in mathematics education: a literature-informed Delphi study. Research in Mathematics Education, 23(2), 159-187. https://doi.org/10.1080/14794802.2020.1852104 DOI: https://doi.org/10.1080/14794802.2020.1852104

Muhammad, I., Rusyid, H. K., Maharani, S. y Angraini, L. M. (2024). Computational thinking research in mathematics learning in the last decade: A bibliometric review. International Journal of Education in Mathematics, Science, and Technology (IJEMST), 12(1), 178-202. http://dx.doi.org/10.46328/ijemst.3086 DOI: https://doi.org/10.46328/ijemst.3086

Narciss, S. (2008). Feedback strategies for interactive learning tasks. En J. J. G. Van Merrienboer, J. M. Spector, M. D. Merrill y M. P. Driscoll (Eds.). Handbook of research on educational communications and technology (pp. 125-144). Lawrence Erlbaum Associates.

Nicol, D. J. y Macfarlane-Dick, D. (2006). Formative assessment and self‐regulated learning: a model and seven principles of good feedback practice. Studies in Higher Education, 31(2), 199-218. http://dx.doi.org/10.1080/03075070600572090 DOI: https://doi.org/10.1080/03075070600572090

Ramaila, S. y Shilenge, H. (2023). Integration of computational thinking activities in grade 10 mathematics learning. International Journal of Research in Business and Social Science, 12(2), 458-471. http://dx.doi.org/10.20525/ijrbs.v12i2.2372 DOI: https://doi.org/10.20525/ijrbs.v12i2.2372

Rezat, S. (2021). How automated feedback from a digital mathematics textbook affects primary students’ conceptual development: Two case studies. ZDM Mathematics Education, 53(6), 1433-1445. http://dx.doi.org/10.1007/s11858-021-01263-0 DOI: https://doi.org/10.1007/s11858-021-01263-0

Sezer, H. B. y Namukasa, I. K. (2023). School and community practices of computational thinking in mathematics education through diverse perspectives. Journal of Research in Science, Mathematics and Technology Education, 6(Special Issue), 137-160. https://doi.org/10.31756/jrsmte.617si DOI: https://doi.org/10.31756/jrsmte.617SI

Subramaniam, S., Maat, S. M. y Mahmud, M. S. (2022). Computational thinking in mathematics education: A systematic review. Cypriot Journal of Educational Sciences, 17(6), 2029-2044. http://dx.doi.org/10.18844/cjes.v17i6.7494 DOI: https://doi.org/10.18844/cjes.v17i6.7494

Türkdoğan, A. y Baki, A. (2021). The relationship between mistakes and feedback encountered in mathematics course in the 7th grade. Journal of Computer and Education Research, 9(17), 480-496. http://dx.doi.org/10.18009/jcer.856700 DOI: https://doi.org/10.18009/jcer.856700

Valente, J. A. (2016). Integração do pensamento computacional no currículo da educação básica: diferentes estratégias usadas e questões de formação de professores e avaliação do aluno. Revista e-Curriculum, 14(3), 864-897. https://revistas.pucsp.br/index.php/curriculum/article/view/29051

Valente, W. R. (2012). Apontamentos para uma história da avaliação escolar em matemática. En W. R. Valente (Org.), Avaliação em matemática: história e perspectivas atuais (pp. 11-38). Papirus.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. http://dx.doi.org/10.1145/1118178.1118215 DOI: https://doi.org/10.1145/1118178.1118215

Published

2024-07-19

How to Cite

Dos Santos, J. M. D. S., Abar, C. A. A. P., & Almeida, M. V. de. (2024). A collaborative study on the development of assessment resources with automatic feedback for the teaching of Mathematics. European Public & Social Innovation Review, 9, 1–21. https://doi.org/10.31637/epsir-2024-374

Issue

Section

INNOVATION IN THE VIRTUALIZATION OF TRAINING PROCESSES