Educational robotics in High School

a bibliometric study

Authors

DOI:

https://doi.org/10.31637/epsir-2024-388

Keywords:

experiential learning, socio-emotional learning, transversal learning, socio-emotional competencies, robotics competition, constructionism, educational robotics, educational technology

Abstract

Introduction: Educational robotics provides a practical learning ecosystem in a playful environment with a combination of activities, tools, and pedagogical technologies, which attract and motivate students at the secondary education level to learn and apply skills and knowledge in computer science, programming, technology, mathematics and science. Methodology: For the bibliometric review, the question is used: What is the use made of Educational Robotics in secondary education? With the interest of carrying out a methodical and rigorous procedure, the PRISMA methodology was used. Results: The evidence of the findings found is presented systematized through an analysis matrix and frequency tables. Discussion: Educational robotics and robotics contests in addition to STEM education (technical education) also strengthen elements (i) intrasubjective, (ii) intersubjective and (iii) life project, which can be characterized as development of socio-emotional competencies (humanistic education ) that are formed under an active school pedagogical approach, experiential learning and student-centered methods, which stimulate critical and creative thinking that lead to the free and genuine creation of the socio-emotional component Conclusions: Socio-emotional education, teamwork skills and communication are transversal learning to robotics. educational.

Downloads

Download data is not yet available.

Author Biographies

Filiberto Guzmán, University of La Salle

Education Professional with 20 years of experience in secondary education, with links during his professional career with the Secretary of Education of Chia, Secretary of Education of Huila and Secretary of Education of Cundinamarca. Master in Education from Universidad Externado de Colombia, Bogotá and Doctoral Candidate in Education and Society at Universidad La Salle, Bogotá.

Ronald Gutiérrez, University of La Salle

D. in Information and Knowledge Society from the Universidad Pontificia de Salamanca (Spain). Specialist in Business Administration from Universidad Sergio Arboleda (Colombia). Electronic Engineer from Universidad Distrital (Colombia). Recognized expert in STEM, consultant for educational institutions and lecturer.

References

Acut, D. (2022). Developing SIPCaR Projects Utilizing Modern Technologies: Its Impact to Students’ Engagement, R&D Skills, and Learning Outcomes. LUMAT: International Journal on Math Science and Technology Education, 10, 294-318. http://doi.org/10.31129/LUMAT.10.1.1667

Agus, H., Syamsudduha, S., Arief, W., Arief, D. P. y Dikas P. N. (2023). Junior High Robotics Inspiration: Engaging Students with Exciting Interactive Socialization. Indonesian Journal of Cultural and Community Development, 14(2), 1-11. http://doi.org/10.21070/ijccd.v14i2.959

Angeriz, E. (2021). Experiencias de aprendizaje de estudiantes en Talleres de Robótica Educativa y Programación en Educación Media, en el marco de los procesos de apropiación de la tecnología y de la alfabetización digital [Tesis doctoral]. Universidad de la República de Uruguay. Repositorio Institucional. https://core.ac.uk/download/548518728.pdf

Aparicio, M., Bacao, F. y Oliveira, T. (2016). An E-Learning Theoretical Framework. Educational Technology and Society, 19(1), 292–307. http://www.jstor.org/stable/jeductechsoci.19.1.292

Azevedo, G. T., Maltempi, M. V. y Powell, A. B. (2022). Contexto Formativo de Invenção Robótico-Matemática: Pensamento Computacional e Matemática Crítica. Bolema: Boletim de Educação Matemática, 36(72), 214-238. https://www.scielo.br/j/bolema/a/qKNTKTPmhg65zpsGnFcM6Wq/?format=pdf&lang=pt

Bampasidis, G., Piperidis, D., Papakonstantinou, V., Stathopoulos, D., Troumpetari, C. y Poutos, P. (2021). Hydrobots, an Underwater Robotics STEM Project. Introduction of Engineering Design Process in Secondary Education. Advances in Engineering Education, 9,1-24. https://files.eric.ed.gov/fulltext/EJ1309105.pdf

Capek, K. (1920). Robots Universales Rossum -R.U.R. Mint Editions.

Castelli, N. y Dulcimeire, V. (2022). Integração Entre Robótica Educacional e Abordagem STEAM: Desenvolvimento de Protótipos Sobre a Temática Responsabilidade Social e Sustentabilidade. Dialogia, 40, 1-26. https://doi.org/10.5585/40.2022.21600

Chang, C. C. y Yiching C. (2022). Using Mastery Learning Theory to Develop Task-Centered Hands-on STEM Learning of Arduino-Based Educational Robotics: Psychomotor Performance and Perception by a Convergent Parallel Mixed Method. Interactive Learning Environments, 30(9), 77-92. http://doi.org/10.1080/10494820.2020.1741400

Chang, C. C. y Chen, Y. K. (2023). A Transdisciplinary STEM Course Integrated through Project-Based Learning on Robotics: Perspective from Teacher and Student Feedback. Asia Pacific Journal of Education, 1-16. https://doi.org/10.1080/02188791.2023.2209698

Chiang, F. K., Zhonghua T., Dan, Z. y Xianqing, B. (2024). Gender Disparity in STEM Education: A Survey Research on Girl Participants in World Robot Olympiad. International Journal of Technology and Design Education, 34(2), 629-46. htpps://doi.org/10.1007/s10798-023-09830-0

Chookaew, S. y Patcharin P. (2022). Implementation of a Robotic-Transformed Five-Phase Inquiry Learning to Foster Students’ Computational Thinking and Engagement: A Mobile Learning Perspective. International Journal of Mobile Learning and Organisation, 16(2),198-220. http://doi.org/10.1504/IJMLO.2022.121888

Copp, D.A., Isaacs, J.T. y Hespanha, J.P. (2021). Programming, Robotics, and Control for High School Students. AEE: Advances in Engineering Education. https://acortar.link/mpaik5

Cuervo, G. y Organista, J.V. (2022). Concurso de Robótica Kenjutsu Robot Como Estrategia Pedagógica Para El Aprendizaje y La Participación. INVENTUM, 17(33),13-26. http://doi.org/10.26620/uniminuto.inventum.17.33.2022.13-26

Cufi, X., Figueras, A., Muntaner, E., Calm, R., Quevedo-Gutiérrez, E., Vega, D., Loustau, J., Gil, J. y Hernandez-Brito, J. (2021). EDUROVs: A Low Cost and Sustainable Remotely Operated Vehicles Educational Program. Sustainability, 13(8657), 1-12. http://doi.org/10.3390/su13158657

Dewey, John. 1938. Experience And Education. Macmillan.

Ferrarelli, P. y Iocchi, L. (2021). Learning Newtonian Physics through Programming Robot Experiments. Technology, Knowledge and Learning, 26(4), 789-824. http://doi.org/10.1007/s10758-021-09508-3

Fortunati, L., Manganelli, A. M. y Ferrin, G. (2022). Arts and Crafts Robots or LEGO® MINDSTORMS Robots? A Comparative Study in Educational Robotics. International Journal of Technology and Design Education, 32(1), 287-310. http://doi.org/10.1007/s10798-020-09609-7

Georgieva, D. y Tsvetanka G. (2023). Developing Mathematical Competencies Through Makeblock mBot Programming in Computer Modelling Education. TEM Journal, 12, 2437-47. http://doi.org/10.18421/TEM124-56

Goldoni, D., Reis, H., Jaques, P. y Mateus, C. (2023). Computational Tools to Teach and Develop Socio-Emotional Skills: A Systematic Mapping. International Journal of Learning Technology, 18, 207-36. http://doi.org/10.1504/IJLT.2023.10058191

Graffin, M., Rachel, S. y Rekha, K. (2022). More than Robots: Reviewing the Impact of the FIRST® LEGO® League Challenge Robotics Competition on School Students’ STEM Attitudes, Learning, and Twenty-First Century Skill Development. Journal for STEM Education Research, 5, 1-22. http://doi.org10.1007/s41979-022-00078-2

Ince, E. y Mustafa, K. (2021). The Consequences of Robotics Programming Education on Computational Thinking Skills: An Intervention of the Young Engineer’s Workshop (YEW). Computer Applications in Engineering Education, 29(1), 1-18. http://doi.org 10.1002/cae.22321

Jackson, A., Mentzer, N. y Kramer-Bottiglio, R. (2021). Increasing Gender Diversity in Engineering Using Soft Robotics. Journal of Engineering Education, 110(1), 143-160. http://doi.org10.1002/jee.20378

Jawawi, D., Nurul, J., Shahliza, A. H., Nor, S., Mamat, R., Isa, M., Mohamad, R. y Hamed, H. (2022). Nurturing Secondary School Student Computational Thinking Through Educational Robotics. International Journal of Emerging Technologies in Learning (iJET), 17, 117-28. http://doi.org10.3991/ijet.v17i03.27311

Jiyoung, K. 2023. Development of a STEAM-based robot education program: Focusing on the case of the 2022 college career exploration camp operation. Korean Society of Design Research, 8(1), 82-91. https://doi.org/10.46248/kidrs.2023.1.82

Kock, F. L., Alves-Martins, G. y Dias, A. L. (2023). Utilização de um Veículo Guiado Automatizado no Ensino de Física e Matemática na Educação Profissional e Tecnológica. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 18(4), 344-353. http://doi.org/10.1109/RITA.2023.3323787

Kolb, David. 1984. Experiential Learning: Experience as the Source of Learning and Development. Prentice Hall.

Liang, J. C. y Gwo-Jen, H. (2023). A Robot-Based Digital Storytelling Approach to Enhancing EFL Learners’ Multimodal Storytelling Ability and Narrative Engagement. Computers & Education, 201(104827), 1-24. https://doi.org/10.1016/j.compedu.2023.104827

Linarta, A., Masrizal, M. yDeasy W. 2023. Implementasi Profil Pelajar Pancasila Melalui Kegiatan Ekstrakurikuler Robotik Dan Smart Farmer Di SMAS Santo Tarcisius Dumai. Warta LPM, 26(4), 422–31. http://doi.org/10.23917/warta.v26i4.2555

Llanos-Ruiz, D., Ausin-Villaverde, V. y Abella-Garcia, V. (2024). Interpersonal and Intrapersonal Skills for Sustainability in the Educational Robotics Classroom. Sustainability, 16(11), 4503, 1-19. http:/doi.org/10.3390/su16114503

Marikyan, D., Papagiannnidis, S. (2023). Technology Acceptance Model: A Review. Theory Hub Book.

Mayub, A., Setiawan, A., Fahmizal, F., Wardaya, R. W., Lazfihma, W., Johan, H. y Nursaadah, E. (2023). The Effect of Robotics Experiments on the Scientific Literacy of Junior High School Students in Bengkulu Province. Jurnal Pendidikan IPA Indonesia, 12(4), 538-51. http://doi.org/10.15294/jpii.v12i4.44991

Ministerio de Educación Nacional de Colombia. (2017). Paso a Paso. Estrategia de Formación de Competencias Socioemocionales En La Educación Secundaria y Media. Departamento Nacional de Planeación, Ministerio de Educación Nacional y Banco Mundial.

Molano, D. (2022). La Robótica Educativa: Una Interdisciplina Didáctica Integradora Para La Enseñanza [Tesis doctoral]. Universidad Santo Tomás. Respositorio Institucional. https://repository.usta.edu.co/handle/11634/48237

Muenmaroung, N., Wuttiporn S. y Surachai, S. (2022). A Study of Currents and Needs in the Computing Science Using a Robot for Online Learning. International Journal of Information and Education Technology, 12,1248-53. http://doi.org/10.18178/ijiet.2022.12.11.1746

Naya, M., Guerreiro, S., Baamonde, T. y Bellas, F. (2023). Robobo SmartCity: An Autonomous Driving Model for Computational Intelligence Learning Through Educational Robotics. IEEE Transactions on Learning Technologies, 16(4), 543-59. http://doi.org/10.1109/TLT.2023.3244604

Page, M. J., Joanne E., McKenzie, P. y Bossuyt, M. (2021). Declaración PRISMA 2020: Una Guía Actualizada Para La Publicación de Revisiones Sistemáticas. Revista Española de Cardiología, 74(9), 790-99. http://doi.org/10.1016/j.recesp.2021.06.016

Papert, S. A. 1980. Mindstorms: Children, Computers, And Powerful Ideas. Basic Books, Inc., Publishers.

Park, Y. (2011). A Pedagogical Framework for Mobile Learning: Categorizing Educational Applications of Mobile Technologies into Four Types. The International Review of Research in Open and Distributed Learning, 12(2), 78-102. http://doi.org/10.19173/irrodl.v12i2.791

Piaget, J. (1970). Genetic Epistemology. American Behavioral Scientist, 13(3), 459-480. https://doi.org/10.1177/000276427001300320

Ricoy, C. (2006). Contribución sobre los paradigmas de investigación. Educação. Revista do Centro de Educação, 31(01), 10-22. https://www.redalyc.org/pdf/1171/117117257002.pdf

Rincón-Duran, R., Niño-Vega, J. A. y Fernández-Morales, F. H. (2021). Hexapod Robot for Teaching Mechanisms for Transforming Movements [Tesis de maestría] Universidad Santo Tomás. Repositorio Institucional. https://doi.org/10.15332/s1657-107X

Rousouliotis, M., Vasileiou, M., Manos, N. y Kavallieratou, E. (2024). Employing an Underwater Vehicle in Education as a Learning Tool for Python Programming. Computer Applications in Engineering Education, 32(1), e22693, 1-18. http://doi.org/10.1002/cae.22693

Sánchez, M., Lahitte, H. B. y Tujague, M. (2010). El Análisis Descriptivo Como Recurso Necesario En Ciencias Sociales y Humanas. Fundamentos En Humanidades, XI(22), 103-116. https://www.redalyc.org/pdf/184/18419812007.pdf

Seoane, T., Martín, J. L. R., Martín-Sánchez, E., Lurueña-Segovia, S. y Alonso-Moreno, F. J. (2007). Estadística Descriptiva y Estadística Inferencial. Medicina de Familia. SEMERGEN, 33(9), 466-71. http://doi.org10.1016/S1138-3593(07)73945-X

Shi, Z., O’Connell, A., Z., Li, Z., Liu, S., Ayissi, J., Hoffman, G., Soleymani, M. y Matarić, M. J. (2024). Build Your Own Robot Friend: An Open-Source Learning Module for Accessible and Engaging AI Education. arXiv, 1-9, https://doi.org/10.48550/arXiv.2402.01647

Souza, I. M. L., Wilkerson L. A. y Lívia, M. R. S. (2022). Educational Robotics Applications for the Development of Computational Thinking in a Brazilian Technical and Vocational High School. Informatics in Education, 21(1), 147-177 http://doi.org/10.15388/infedu.2022.06

Spruill, N., Colin H. E., Volpe, D. y Alcantara, K. (2021). Engineering Care: How Two Young Women of Color Establish Positional Identities in a Robotics Space. Journal of Pre-College Engineering Education Research (J-PEER), 11(1), 256-275. http://doi.org/ 10.7771/2157-9288.1299

Van-Winkle, C. M., Jill N. H., Bueddefeld, E. A. H. y MacKay, K. J. (2019). The Unified Theory of Acceptance and Use of Technology 2: Understanding Mobile Device Use at Festivals. Leisure Studies, 38(5), 634-650. http://doi.org/10.1080/02614367.2019.1618895

Verner, I. M., Cuperman, D. y Reitman, M. (2021). Exploring Robot Connectivity and Collaborative Sensing in a High-School Enrichment Program. Robotics, 10(1), 1-19. https://doi.org/10.3390/robotics10010013

Verner, I. M., Perez, H. y Rea, L. (2022). Characteristics of Student Engagement in High-School Robotics Courses. International Journal of Technology and Design Education, 32(4), 2129-2150. https://doi.org/10.1007/s10798-021-09688-0

Vygotsky, Lev. 1976. Pensamiento y Lenguaje. Ediciones Paidós.

Zhan, Z., Baichang Z., Xiangyang S., Qiuji S. y Zheng, J. (2022). The Design and Application of IRobotQ3D for Simulating Robotics Experiments in K-12 Education. Computer Applications in Engineering Education, 30(2), 532–549. https://doi.org/10.1002/cae.22471

Jiyoung Kim. 2023. Development of a STEAM-based robot education program: Focusing on the case of the 2022 college career exploration camp operation. Korean Society of Design Research, 8(1), 82-91. https://doi.org/10.46248/kidrs.2023.1.82

Published

2024-07-24

How to Cite

Guzmán, F., & Gutiérrez, R. (2024). Educational robotics in High School: a bibliometric study. European Public & Social Innovation Review, 9, 1–20. https://doi.org/10.31637/epsir-2024-388

Issue

Section

INNOVATING IN CUTTING-EDGE TECHNOLOGIES