Algorithmic mediation: bias in the information search by university students

Authors

DOI:

https://doi.org/10.31637/epsir-2024-397

Keywords:

information search, algorithmic mediation, biases, critical thinking, saturation, anchor, availability, university students

Abstract

Introduction: Internet information search is governed by web rules, requiring the mediation of a search algorithm. In this study, we aim to characterize the interaction between critical thinking and information saturation on the decisions of first-year students during information search processes, enabling the recognition of cognitive biases present in these decisions. Methodology: An experimental study was conducted with first-year students who completed three information search tasks. The GoNSA2 platform automatically recorded the search process traces for each task. Results: The main findings pertain to the operation of cognitive biases such as anchoring, ranking, and availability, which depend on the operation of critical thinking, information saturation, and the task context. Discussion: It is evident that the operation of biases depends on the combined interaction of critical thinking, information saturation, and the task context, making context a determinant of students' decisions. Conclusions: These findings support the importance of search models that enable new pedagogical strategies aimed at fostering critical information search competence.

Downloads

Download data is not yet available.

Author Biographies

Martha Vidal-Sepúlveda, Universidad Central de Chile

Professor of History and Geography (1999) from the University of Concepción, Master in Curriculum Development and Educational Projects (2014) from Universidad Andres Bello, and Doctor of Communication (2023) from the Austral University of Chile and the University of La Frontera. I conduct studies on digital literacy, digital citizenship, and the educommunicative issues that emerge in the process of problem-solving in educational contexts. Additionally, I analyze the media consumption behavior through information search and the influence of critical thinking on the behavior of young news readers. Finally, I carry out studies on teachers' digital competencies in the face of the emergence of Generative Artificial Intelligence.

Cristian Olivares-Rodríguez, Alberto Hurtado University

Computer Science Engineer (2006) from UCSC (Chile), Master in Computer Vision and Artificial Intelligence (2010) from UAB (Spain), and Doctor in Engineering (2017) from the University of Deusto (Spain). Academic in data science and software engineering. I study models of use, appropriation, and co-production of technologies, particularly Artificial Intelligence. This interdisciplinary area combines elements of sociology, technology, communication, and knowledge management. It examines how technologies are adopted, adapted, and transformed by people and communities in various contexts, especially in relation to territorial management and development, considering that technologies are products of social processes but also shape these processes.

References

Baeza-Yates, R. (2018). Bias on the web. Communications of the ACM, 61(6), 54-61. https://doi.org/10.1145/3209581 DOI: https://doi.org/10.1145/3209581

Baeza-Yates, R. (18 de marzo de 2021). Estimación del exceso de muertes y fallecimientos por Covid-19 en 2020. Ciper. https://cuwk.short.gy/cipercovid

Bhaskar, M. (2018). Curaduría: El Poder de la Selección en un Mundo de Excesos. Fondo de Cultura Económica.

Buckingham, D. (2008). Más Allá de la Tecnología. Aprendizaje Infantil en la Era de la Cultura Digital. Manantial.

Burbules, N. C. (2012). El aprendizaje ubicuo y el futuro de la enseñanza. Encounters on Eeducation, 13(212), 3-14. https://doi.org/10.24908/eoe-ese-rse.v13i0.4472 DOI: https://doi.org/10.15572/ENCO2012.01

Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1). https://doi.org/10.1177/2053951715622512 DOI: https://doi.org/10.1177/2053951715622512

Campbell, D. T. y Stanley, J. C. (1995). Diseños Experimentales y Cuasi-Experimentales en la Investigación social. En M. Kitaigorodzki (Trad.) (1996). Amorrortu.

Cortada de Kohan, N. (2008). Los sesgos cognitivos en la toma de decisiones. International Journal of Psychological Research 2008, 1(1), 68-73. https://doi.org/10.21500/20112084.968 DOI: https://doi.org/10.21500/20112084.968

Chander, A. (2016). The racist algorithm. Michigan Law Review, 115, 1023. http://repository.law.umich.edu/mlr/vol115/iss6/13. DOI: https://doi.org/10.36644/mlr.115.6.racist

Faulkner, S. L. y Trotter, S. P. (2017). Theoretical saturation. En J. Matthes (Ed.). The International Encyclopedia of Communication Research Methods (pp. 1-2). Wiley. DOI: https://doi.org/10.1002/9781118901731.iecrm0250

Flick, U. (2007). Introducción a la investigación cualitativa. Morata.

Ghenai, A., Smucker, M. D. y Clarke, C. L. (2020, March). A think-aloud study to understand factors affecting online health search. En Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (273-282). https://doi.org/10.1145/3343413.3377961 DOI: https://doi.org/10.1145/3343413.3377961

Hernández Sampieri, R., Fernández Collado, C. y Baptista Lucio, P. (2018). Metodología de la Investigación. McGraw-Hill Interamericana.

Hernández, D. J., Sánchez, P. M. y Giménez, F. S. S. (2021). La competencia digital docente, una revisión sistemática de los modelos más utilizados. RIITE Revista Interuniversitaria de Investigación en Tecnología Educativa, 105-120. https://doi.org/10.6018/riite.472351 DOI: https://doi.org/10.6018/riite.472351

Kahneman, D. (2012). Pensar Rápido, Pensar Despacio. Debate.

Kelly, D. y Azzopardi, L. (2015). How many results per page? A study of SERP size, search behavior and user experience. En Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 183-192). https://doi.org/10.1145/2766462.2767732 DOI: https://doi.org/10.1145/2766462.2767732

Liu, J. (2019). A reference-dependent model of search evaluation. En Proceedings of the 2019 Conference on Human Information Interaction and Retrieval (pp. 405-408). https://doi.org/10.1145/3295750.3298970 DOI: https://doi.org/10.1145/3295750.3298970

Matute, H. (2019). Nuestra Mente nos Engaña. Sesgos y Errores Cognitivos que Todos Cometemos. Shackleton books.

Mesquita-Romero, W. A., Fernández-Morante, C. y Cebreiro-López, B. (2022). Alfabetización mediática crítica para mejorar la competencia del alumnado. Comunicar: Revista Científica Iberoamericana de Comunicación y Educación, 70, 47-57. https://doi.org/10.3916/C70-2022-04 DOI: https://doi.org/10.3916/C70-2022-04

Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press. DOI: https://doi.org/10.2307/j.ctt1pwt9w5

Novin, A. y Meyers, E. (2017). Making sense of conflicting science information: Exploring bias in the search engine result page. En Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval (pp. 175-184). https://doi.org/10.1145/3020165.3020185 DOI: https://doi.org/10.1145/3020165.3020185

Olivares-Rodríguez, C., Guenaga, M. y Garaizar, P. (2017). Automatic assessment of creativity in heuristic problem-solving based on query diversity. Dyna, 92(4), 449-455. http://dx.doi.org/10.6036/8243 DOI: https://doi.org/10.6036/8243

Olivares-Rodríguez, C., Valdés-León, G. y Vidal-Sepúlveda, M. (2021). Influencia de la agenda mediática en las búsquedas de información: una experiencia con estudiantes universitarios. ReHuSo, 6(2), 17-28. https://doi.org/10.33936/rehuso.v6i2.3423

Pasquale, F. (2015). The Black Box Society: The Secret Algorithms that Control Money and Information. Harvard University Press. DOI: https://doi.org/10.4159/harvard.9780674736061

Pereira, S., Fillol, J. y Moura, P. (2019). El aprendizaje de los jóvenes con medios digitales fuera de la escuela: De lo informal a lo formal. Comunicar, 27(58), 41-50. https://doi.org/10.3916/C58-2019-04 DOI: https://doi.org/10.3916/C58-2019-04

Pick S. y López A. (1998). Cómo Investigar en Ciencias Sociales. Trillas.

Pothirattanachaikul, S., Yamamoto, T., Yamamoto, Y. y Yoshikawa, M. (2020). Analyzing the effects of "people also ask" on search behaviors and beliefs. En Proceedings of the 31st ACM Conference on Hypertext and Social Media (pp. 101-110). DOI: https://doi.org/10.1145/3372923.3404786

Roetzel, P. G. (2019). Information overload in the information age: a review of the literature from business administration, business psychology, and related disciplines with a bibliometric approach and framework development. Business Research, 12(2), 479-522. https://doi.org/10.1007/s40685-018-0069-z DOI: https://doi.org/10.1007/s40685-018-0069-z

Sales, D., Cuevas-Cerveró, A. y Gómez-Hernández, J. (2020). Perspectives on the information and digital competence of Social Sciences students and faculty before and during lockdown due to Covid-19. El Profesional de la Información, 29(4),1-21. https://doi.org/10.3145/epi.2020.jul.23 DOI: https://doi.org/10.3145/epi.2020.jul.23

Schultheiß, S., Sünkler, S. y Lewandowski, D. (2018). We still trust in Google, but less than 10 years ago: an eye-tracking study. Information Research: An International Electronic Journal, 23(3), 799. http://informationr.net/ir/23-3/paper799.html

Simon, H. A. (1957). Models of Man; Social and Rational. Wiley. DOI: https://doi.org/10.2307/2550441

Su, N., He, J., Liu, Y., Zhang, M. y Ma, S. (2018). User intent, behaviour, and perceived satisfaction in product search. En Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (pp. 547-555). https://doi.org/10.1145/3159652.3159714 DOI: https://doi.org/10.1145/3159652.3159714

Suárez Guerrero, C. y Lloret Català, M. D. C. (2022). La Digitalización de la Educación en Pandemia. Mirada del docente peruano. REICE-Revista Electrónica Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 20(4), 125-144. https://doi.org/10.15366/reice2022.20.4.007 DOI: https://doi.org/10.15366/reice2022.20.4.007

The Economist. (2021, 20 de octubre). Tracking COVID-19 excess deaths across countries. In many parts of the world, official death tolls undercount the total number of fatalities. The economist. https://www.economist.com/graphic-detail/coronavirus-excess-deaths-tracker

Tversky, A. y Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90(4), 293-315. https://doi.org/10.1037/0033-295X.90.4.293 DOI: https://doi.org/10.1037//0033-295X.90.4.293

Urgo, K., Arguello, J. y Capra, R. (2019). Anderson and krathwohl's two-dimensional taxonomy applied to task creation and learning assessment. En Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval (pp. 117-124). https://doi.org/10.1145/3341981.3344226 DOI: https://doi.org/10.1145/3341981.3344226

Vidal-Sepúlveda, M., Olivares-Rodríguez, C. y Cárcamo-Ulloa, L. (2021). What kind of sources do I need? Critical search for information on the Web. Information Research, 26(4). https://doi.org/10.47989/irpaper913 DOI: https://doi.org/10.47989/irpaper913

Valenzuela, J. y Nieto, A. M. (2008). Motivación y Pensamiento Crítico: Aportes para el estudio de esta relación. REME, 9(28). http://reme.uji.es/articulos/numero28/article3/article3.pdf

Wu, W. C. y Kelly, D. (2015). Online search stopping behaviors: An investigation of query abandonment and task stopping. Proceedings of the American Society for Information Science and Technology, 51(1), 1-10. https://doi.org/10.1002/meet.2014.14505101030 DOI: https://doi.org/10.1002/meet.2014.14505101030

Yagci, N., Sünkler, S., Häußler, H. y Lewandowski, D. (2022). A comparison of source distribution and result overlap in web search engines. arXiv preprint arXiv:2207.07330. https://doi.org/10.48550/arXiv.2207.07330 DOI: https://doi.org/10.1002/pra2.758

Published

2024-07-19

How to Cite

Vidal-Sepúlveda, M., & Olivares-Rodríguez, C. (2024). Algorithmic mediation: bias in the information search by university students. European Public & Social Innovation Review, 9, 1–18. https://doi.org/10.31637/epsir-2024-397

Issue

Section

INNOVATING IN THE GALAXY OF ARTIFICIAL INTELLIGENCE