Best practices for green (sustainable) software development using artificial intelligence
DOI:
https://doi.org/10.31637/epsir-2024-436Keywords:
Sustainable Software Engineering, Artificial Intelligence, Software Carbon Footprint, Energy Efficiency, Green Programming Language, Software development methodologies, Green Programming, Green SoftwareAbstract
Introduction: Today different areas such as software engineering (IS), environment and Artificial Intelligence (AI) converge. IS with AI is based on the transformation of software development, starting the process with the code and including implementation. Methodology: the employee is descriptive type. Information was extracted from scientific databases. After identifying the problem and defining the scope of work, two AI tools were selected for software development, then the performance of the programs was analyzed, evaluating energy efficiency. Results: According to the studies carried out, the Java language is the greenest compared to Python. Discussion: Modern computer programs have many challenges, one of them, they have millions of lines of code (LDC), this aspect can lead to resource consumption and performance difficulties, which is reflected in effectiveness and affects the user experience. Conclusions: It was concluded that creating sustainable and ethical systems, it is essential to project a responsible future, where developers have the power and responsibility to generate appropriate and environmentally friendly applications.
Downloads
References
Anchundia Padilla, A. F., Barzola Ávila, E. S. y Tomala Solórzano, R. A. (2023). Programación verde en el software. Revista UNESUM-Ciencias. https://acortar.link/SmUSJL
Autentia. (2020). Software Design: La guía completa. https://bit.ly/3LdsovE
Bacalla, J. G. (2018, 31 de octubre). La Ingeniería de Sistemas y El Compromiso al Medio Ambiente [actualización de LinkedIn]. https://bit.ly/3LcFclZ
Brito Martínez, C. (2021). Software Libre para uso en Medio Ambiente. https://bit.ly/3W890GF
Castañeda Olvera, D. R. (2022). La nube contaminante. Un análisis socioambiental de la huella de carbono digital. PAAKAT: revista de tecnología y sociedad, 12. https://doi.org/10.32870/PK.A12N22.730 DOI: https://doi.org/10.32870/Pk.a12n22.730
Charniak, E. y Mcdermott, D. (1985). Introduction to Artificial Intelligence. Addison-Wesley.
Erazo Luzuriaga, A. F., Galarza Sánchez, P. C., Ramos Secaira, F. M. y Boné Andrade, M. F. (2023). La inteligencia artificial aplicada a la optimización de programas informáticos. Journal of Economic and Social Science Research. https://bit.ly/3VRNRiA DOI: https://doi.org/10.55813/gaea/jessr/v3/n1/61
García Sandoval, M. G., Ariza Torrado, H. D., Pinzón, M. L. y Flórez Fuentes, A. S. (2015). Buenas prácticas aplicadas a la implementacion colaborativo de aplicativos web. Mundo FESC, 5(10), 27-30. https://www.fesc.edu.co/Revistas/OJS/index.php/mundofesc/article/view/67
Green Software Practitioner. (s.f.). Carbon Awareness. https://bit.ly/3VTmlBh
Green Software Practitioner. (s.f.). Hardware Efficiency. https://bit.ly/3LcPbaR
Haugeland, J. (1985). Artificial intelligence: The very idea. https://bit.ly/3VUxYYC
Hernández González, A. (2018). La sostenibilidad y el software. Revista Dilemas Contemporáneos: Educación, Política y Valores. https://bit.ly/4byUnAF
Ibarra, J. (2023). Reducción de la Huella de Carbono del Software a través de la optimización de compiladores. https://www.researchgate.net/publication/370684524
Iberdrola. (s.f.). ¿Qué es la huella de carbono y por qué es vital reducirla para frenar el cambio climático? https://www.iberdrola.com/sostenibilidad/huella-de-carbono
Ibrahim, M., Danbala, A. y Ismail, M. (2019). Towards attaining reliable and efficient green cloud computing using micro-smart grids to power internet data center center. Journal of Computer and Communications. DOI: https://doi.org/10.4236/jcc.2019.77016
Luger, G. y Stubblefield, W. (1997). Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Addison Wesley.
Microsoft. (s.f.). Principios de la ingeniería de software sostenible. https://bit.ly/3LcVOtS
Monroy Alfaro, C. R. (2022). El lenguaje python y su potencial en el desarrollo de software de inteligencia artificial. Revista Científica de la Universidad Salvadoreña Alberto Masferrer. https://bit.ly/4cNkTr3
Narvaez, L. y Jurado, J. L. (2011). Implantación de Buenas Prácticas a un Proceso de Desarrollo. Journal De Ciencia E Ingeniería, 29-33. https://bit.ly/3WbGNPc
Naumann, S., Dick, M., Kern, E. y Johann, T. (2011). The greensoft model: A reference model for green and sustainable software and its engineering. Sustainable Computing: Informatics and Systems, 294-304. DOI: https://doi.org/10.1016/j.suscom.2011.06.004
Pereira, R., Couto, M. y Ribeiro, F. (2017). Programming Languages: How Do Energy, Time, and Mem-ory Relate. https://doi.org/10.1145/3136014.3136031 DOI: https://doi.org/10.1145/3136014.3136031
Polo, J. D. (2023). Inteligencia Artificial para desarrolladores, recursos que ayudan a programar. https://bit.ly/4cNl5qh
Practitioner, G. S. (s.f.). Carbon Awareness. https://bit.ly/3zz4oR3
Rodríguez, J. (2023). ¿Sabías que realizar 100 búsquedas en Google tiene un gasto energético equivalente al de una bombilla de 60 vatios? iElektro. https://bit.ly/3Le3cFa
Schalkoff, R. J. (1990). Artificial Intelligence: An Engineering Approach. McGraw-Hill.
Soto Duran, D. E., Reyes Gamboa, A. X., Giraldo Mejía, J. C., Villamizar Jaimes, A. y Vidal Alegría, F. A. (2022). Buenas prácticas para el desarrollo de software sostenible. Revista Ibérica de Sistemas e Tecnologias de Informação Iberian Journal of Information Systems and Technologies, 449.
Toppin, A. C. (23 de 3 de 2018). Medium. https://bit.ly/3Wcsp9m DOI: https://doi.org/10.2307/j.ctvscxt08.7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ricardo Antonio Botero Rios
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).