Machine learning for grasping recognition using wearable sensors
DOI:
https://doi.org/10.31637/epsir-2025-1205Palabras clave:
Grasp recognition, Hand motion analysis, Wearable sensors, Windowing, Human behavior inference, Segmentation, Traditional classifiers, F-ScoreResumen
Introduction: The objective is to evaluate the traditional classifiers for the identification of the grasp while doing different jobs, in order to obtain information that can be used in the diagnostic of the physical work requirements and job design. Methodology: The analysis considered different combinations of the data acquired from inertial and force resistive sensors: a) acceleration and resistive force sensors, b) acceleration, angular velocity and resistive force sensors c) acceleration, angular velocity, magnetic fields, and resistive force sensors. Different combinations of window and step sizes were selected with two overlap options: 50% and greater than 50%. Traditional classification models were trained: support vector machines, ensembles, Naive-Bayes algorithm. Results: Results demonstrate that the window size that presented optimal performance in the present study was 3 seconds with an overlap greater than 50%, the window size is greater than that suggested in the literature, which ranges from 0.75 to 2.25 seconds. Conclusions: The accuracy and F-score metrics for the different window-step combinations are presented, both metrics indicate that the models trained through Support Vector Machine have the best performance (90 %) with the combination of acceleration, angular velocity, and resistive force sensor.
Descargas
Citas
Achumba, I. E., Bersch, S., Khusainov, R., Azzi, D., & Kamalu, U. (2012). Activity Classification, 427-430. DOI: https://doi.org/10.1109/HealthCom.2012.6379453
Anthony, G., Gregg, H., & Tshilidzi, M. (2007). Image classification using SVMs: One-Against-One Vs One-against-All. 28th Asian Conference on Remote Sensing 2007, ACRS 2007, 2, 801-806.
Armstrong, T. J., Foulke, J. A., Joseph, B. S., & Goldstein, S. A. (1982). Investigation of cumulative trauma disorders in a poultry processing plant. American Industrial Hygiene Association Journal, 43(2), 103-116. https://doi.org/10.1080/15298668291409433 DOI: https://doi.org/10.1080/15298668291409433
Baldominos, A., Cervantes, A., Saez, Y., & Isasi, P. (2019). A comparison of machine learning and deep learning techniques for activity recognition using mobile devices. Sensors (Switzerland), 19(3). https://doi.org/10.3390/s19030521 DOI: https://doi.org/10.3390/s19030521
Banos, O., Galvez, J. M., Damas, M., Pomares, H., & Rojas, I. (2014). Window size impact in human activity recognition. Sensors (Switzerland), 14(4), 6474-6499. https://doi.org/10.3390/s140406474 DOI: https://doi.org/10.3390/s140406474
Barr, A. E., Barbe, M. F., & Clark, B. D. (2004). Work-Related Musculoskeletal Disorders of the Hand and Wrist: Epidemiology, Pathophysiology, and Sensorimotor Changes. Journal of Orthopaedie & Sports Physical Therapy, 34(10), 610-627. DOI: https://doi.org/10.2519/jospt.2004.34.10.610
Bevan, S. (2015). Economic impact of musculoskeletal disorders (MSDs) on work in Europe. Best Practice and Research: Clinical Rheumatology, 29(3), 356-373. https://doi.org/10.1016/j.berh.2015.08.002 DOI: https://doi.org/10.1016/j.berh.2015.08.002
Bulling, A., Blanke, U. L. F., & Schiele, B. (2014). A Tutorial on Human Activity Recognition Using Body-Worn, 46(3), 1-33. DOI: https://doi.org/10.1145/2499621
Chandra Sen, P., Hajra, M., & Ghosh, M. (2020). Supervised Classification Algorithms in Machine Learning: A Survey and Review. In J. Mandal, and D. Bhattacharya (Eds.). Emerging Technology in Modelling and Graphics. Advances in Intelligent Systems and Computing (pp. 99-111). Springer Singapore. DOI: https://doi.org/10.1007/978-981-13-7403-6_11
https://doi.org/10.1007/978-981-13-7403-6 DOI: https://doi.org/10.1007/978-981-13-7403-6
Chen, Y., & Shen, C. (2017). Performance Analysis of Smartphone-Sensor Behavior for Human Activity Recognition. IEEE Access, 5(c), 3095-3110. https://doi.org/10.1109/ACCESS.2017.2676168 DOI: https://doi.org/10.1109/ACCESS.2017.2676168
Feix, T., Bullock, I. M., & Dollar, A. M. (2014). Analysis of human grasping behavior: Object characteristics and grasp type. IEEE Transactions on Haptics, 7(3), 311-323. https://doi.org/10.1109/TOH.2014.2326871 DOI: https://doi.org/10.1109/TOH.2014.2326871
Feix, T., Romero, J., Schmiedmayer, H. B., Dollar, A. M., & Kragic, D. (2016). The GRASP Taxonomy of Human Grasp Types. IEEE Transactions on Human-Machine Systems, 46(1), 66-77. https://doi.org/10.1109/THMS.2015.2470657 DOI: https://doi.org/10.1109/THMS.2015.2470657
Figo, D., Diniz, P. C., Ferreira, D. R., & Cardoso, M. P. (2010). Preprocessing techniques for context recognition from accelerometer data. Pers Ubiquit Comput, 14, 645-662. https://doi.org/10.1007/s00779-010-0293-9 DOI: https://doi.org/10.1007/s00779-010-0293-9
Govaerts, R., Tassignon, B., Ghillebert, J., Serrien, B., De Bock, S., Ampe, T., El Makrini, I., Vanderborght, B., Meeusen, R., & De Pauw, K. (2021). Prevalence and incidence of work-related musculoskeletal disorders in secondary industries of 21st century Europe: a systematic review and meta-analysis. BMC Musculoskeletal Disorders, 22(1), 1-30. https://doi.org/10.1186/s12891-021-04615-9 DOI: https://doi.org/10.1186/s12891-021-04615-9
Jianwei, N., Yiling, H., Muyuan, L., Xin, Z., Linghua, R., Chuzhi, Ch., & Baoqin, Z. (2010). A comparative study on application of data mining technique in human shape clustering: Principal component analysis vs. Factor analysis. 2010 5th IEEE Conference on Industrial Electronics and Applications, 2014-2018. https://doi.org/10.1109/ICIEA.2010.5515577 DOI: https://doi.org/10.1109/ICIEA.2010.5515577
Kubota, A., Iqbal, T., Shah, J. A., & Riek, L. D. (2019). Activity recognition in manufacturing: The roles of motion capture and sEMG+inertial wearables in detecting fine vs gross motion. Proceedings - IEEE International Conference on Robotics and Automation, 6533-6539. https://doi.org/10.1109/ICRA.2019.8793954 DOI: https://doi.org/10.1109/ICRA.2019.8793954
Lapucci, T., Troiano, L., Carobbi, C., & Capineri, L. (2021). Soft and hard iron compensation for the compasses of an operational towed hydrophone array without sensor motion by a helmholtz coil. Sensors, 21(23), 8104. https://doi.org/10.3390/s21238104 DOI: https://doi.org/10.3390/s21238104
Lara, D., & Labrador, M. A. (2013). A Survey on Human Activity Recognition using. IEEE Communications Surveys & Tutorials, 15(3), 1192-1209. https://doi.org/10.1109/SURV.2012.110112.00192 DOI: https://doi.org/10.1109/SURV.2012.110112.00192
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539
Lima, W. S., Souto, E., El-khatib, K., Jalali, R., & Gama, J. (2019). Human Activity Recognition Using Inertial Sensors in a Smartphone : An Overview. Sensors, 19(14), 3213; https://doi.org/10.3390/s19143213 DOI: https://doi.org/10.3390/s19143213
Moschetti, A., Fiorini, L., Esposito, D., Dario, P., & Cavallo, F. (2016). Recognition of daily gestures with wearable inertial rings and bracelets. Sensors, 16(8), 1341. https://doi.org/10.3390/s16081341 DOI: https://doi.org/10.3390/s16081341
Ni, Q., Patterson, T., Cleland, I., & Nugent, C. (2016). Dynamic detection of window starting positions and its implementation within an activity recognition framework. Journal of Biomedical Informatics, 62, 171-180. https://doi.org/10.1016/j.jbi.2016.07.005 DOI: https://doi.org/10.1016/j.jbi.2016.07.005
Nur, N. M., Dawal, S. Z., & Dahari, M. (2014). The Prevalence of Work Related Musculoskeletal Disorders Among Workers Performing Industrial Repetitive Tasks in the Automotive Manufacturing Companies. In Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, 1-8. http://ieomsociety.org/ieom2014/pdfs/303.pdf
Nweke, H. F., Teh, Y. W., Al-garadi, M. A., & Alo, U. R. (2018). Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Systems with Applications, 105, 233-261. https://doi.org/10.1016/j.eswa.2018.03.056 DOI: https://doi.org/10.1016/j.eswa.2018.03.056
Saez, Y., Baldominos, A., & Isasi, P. (2016). A Comparison Study of Classifier Algorithms for Cross-Person Physical Activity Recognition. Sensors (Basel, Switzerland), 17(1), 66. https://doi.org/10.3390/s17010066 DOI: https://doi.org/10.3390/s17010066
Shoaib, M., Bosch, S., Durmaz Incel, O., Scholten, H., & Havinga, P. J. M. (2014). Fusion of smartphone motion sensors for physical activity recognition. Sensors, 14(6). https://doi.org/10.3390/s140610146 DOI: https://doi.org/10.3390/s140610146
Xue, Y., Ju, Z., Xiang, K., Chen, J., & Liu, H. (2019). Multimodal Human Hand Motion Sensing and Analysis-A Review. IEEE Transactions on Cognitive and Developmental Systems, 11(2), 162-175. https://doi.org/10.1109/TCDS.2018.2800167 DOI: https://doi.org/10.1109/TCDS.2018.2800167
Zou, Y, Liu, H. & Zhang, J. (2019). Real-Time Grasp Type Recognition Using Leap Motion Controller. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (Eds.). Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science (pp.472-480). https://doi.org/10.1007/978-3-030-27535-8_42 DOI: https://doi.org/10.1007/978-3-030-27535-8_42
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Graciela Rodriguez Vega, Dora Aydee Rodríguez Vega

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).