Polymeter fibers and natural fibers for vehicular pavement structures in Perú
DOI:
https://doi.org/10.31637/epsir-2024-1787Palabras clave:
fibers, polymer, natural, vehicle, Perú, biodegradability, low cost, lower densityResumen
Introduction: Polymeter fibers and natural fibers for vehicular pavement structures in Peru. The objective of this systematic review was to analyze technical information on polymer fibers and natural fibers for vehicular pavement structures in Peru. The applied methodology had a qualitative bibliographic approach, whose design was framed in the literature review and documentary analysis of fifty scientific productions, published in journals indexed to the databases: Scopus, and scielo. The main results indicate that natural fibers and polymer are a good option for reinforcing flexible pavements, since good results were obtained in the tests carried out.
Descargas
Citas
Aljubory, A., Abbas, A. S., & Bdan, A. (2020). Effect of palm fibers on asphalt pavement properties. Materials Science and Engineering Conference Series, 881, 012176. https://doi.org/10.1088/1757899X/881/1/012176 DOI: https://doi.org/10.1088/1757-899X/881/1/012176
Alnadish, A. M., & Aman, M. Y. (2019). Evaluation of aramid fibre-reinforced asphalt mixtures. Lecture Notes in Civil Engineering, 9, 1377-1388. https://lc.cx/8Qob0w DOI: https://doi.org/10.1007/978-981-10-8016-6_99
Bajwa, D. S., & Bhattacharjee, S. (2016). Current Progress, Trends and Challenges in the Application of Biofiber Composites by Automotive Industry. Journal of Natural Fibers, 13(6), 660-669. https://doi.org/10.1080/15440478.2015.1102790
Bueno, M., & Poulikakos, L. (2020). Chemo-mechanical evaluation of asphalt mixtures reinforced with synthetic fibers. Frontiers in Built Environment, 6, 41. https://doi.org/10.3389/fbuil.2020.00041 DOI: https://doi.org/10.3389/fbuil.2020.00041
Cavalcanti, D., Banea, M., Neto, J. S., Lima, R., da Silva, L., & Carbas, R. (2019). Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Compos. Part B Engineered, 175, 107149. http://dx.doi.org/10.1016/j.compositesb.2019.107149 DOI: https://doi.org/10.1016/j.compositesb.2019.107149
Colares do Vale, A., Toé Casagrande, M., & Barbosa Soares, J. (2014). Behavior of natural fiber in stone matrix asphalt mixtures using two design methods. Journal of Materials in Civil Engineering, 26, 457-465. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000815 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000815
Cruz, J., & Fangueiro, R. (2016). Surface modification of natural fibers: a review. Procedia Engineering, 155, 285-288. https://doi.org/10.1016/J.PROENG.2016.08.030 DOI: https://doi.org/10.1016/j.proeng.2016.08.030
Chaudhary, V., & Ahmad, F. (2020). Review on plant fiber reinforced thermoset polymers for structural and frictional composites. Polymer Testing, 91, 106792. https://lc.cx/nz2u8D DOI: https://doi.org/10.1016/j.polymertesting.2020.106792
Chen, Z., Yi, J., Chen, Z., & Feng, D. (2019). Properties of asphalt binder modified by corn stalk fiber. Construction and Building Materials, 212, 225235. https://doi.org/10.1016/j.conbuildmat.2019.03.329 DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.329
Jariwala, H., & Jain, P. (2019). Review on mechanical behavior of natural fiber reinforced polymer composites and its applications. Journal of Reinforced Plastics and Composites, 38(10), 441-453. https://doi.org/10.1177/0731684419828524 DOI: https://doi.org/10.1177/0731684419828524
Kamaruddin, I., Napiah, M., & Nahi, M. H. (2016). The influence of moisture on the performance of polymer fibre-reinforced asphalt mixture. MATEC Web of Conferences, 78, 01040. https://doi.org/10.1051/matecconf/20167801040 DOI: https://doi.org/10.1051/matecconf/20167801040
Kar, D., Giri, J. P., & Panda, M. (2019). Performance evaluation of bituminous paving mixes containing sisal fiber as an additive. Transportation Infrastructure Geotechnology, 6(3), 189-206. https://doi.org/10.1007/s40515-01900079-6 DOI: https://doi.org/10.1007/s40515-019-00079-6
Kara De Maeijer, P., Soenen, H., Van den Bergh, W., Blom, J., Jacobs, G., & Stoop, J. (2019). Peat f ibers and finely ground peat powder for application in asphalt. Infrastructures, 4(1), 3. https://doi.org/10.3390/infrastructures4010003 DOI: https://doi.org/10.3390/infrastructures4010003
Karthi, N., Kumaresan, K., Sathish, S., Gokulkumar, S., Prabhu, L., & Vigneshkumar, N. (2019). An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Materials Today: Proceedings, 27, 2828-2834. https://doi.org/10.1016/j.matpr.2020.01.011 DOI: https://doi.org/10.1016/j.matpr.2020.01.011
Kassem, H., Saleh, N., Zalghout, A., & Chehab, G. (2018). Advanced characterization of asphalt concrete mixtures reinforced with synthetic f ibers. Journal of Materials in Civil Engineering, 30(11), 04018307. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002521 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002521
Khalid, M., Imran, R., Arif, Z., Akram, N., Arshad, H., Rashid, A., & Márquez, F. (2021). Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings, 11(3), 1-18. https://doi.org/10.3390/coatings11030293 DOI: https://doi.org/10.3390/coatings11030293
Kicińska, A., Bogacz, E., & Zimniewska, M. (2012). Review of Natural Fibers. Part I-Vegetable Fibers. Journal of Natural Fibers, 9(3), 150-167. https://doi.org/10.1080/15440478.2012.703370 DOI: https://doi.org/10.1080/15440478.2012.703370
Koronis, G., & Silva, A. (2018). Green composites for automotive applications, 3rd ed.; Elsevier Science & Technology.
Lee, C. H., Sapuan, S. M., & Hassan, M. R. (2017). Mechanical and thermal properties of kenaf fiber reinforced polypropylene/magnesium hydroxide composites. Journal of Engineered Fibers and Fabrics, 12(2), 50-58. https://journals.sagepub.com/doi/pdf/10.1177/155892501701200206 DOI: https://doi.org/10.1177/155892501701200206
Li, Z., Zhang, X., Fa, C., Zhang, Y., Xiong, J., & Chen, H. (2020). Investigation on characteristics and properties of bagasse fibers: Performances of asphalt mixtures with bagasse fibers. Construction and Building Materials, 248, 118648. https://lc.cx/xVjhdS DOI: https://doi.org/10.1016/j.conbuildmat.2020.118648
Lotfi, A., Li, H., Dao, D. V., & Prusty, G. (2019).Natural fiber–reinforced composites: a review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials,34(3), 089270571984454. https://doi.org/10.1177/0892705719844546 DOI: https://doi.org/10.1177/0892705719844546
Moreno, B., Muñoz, M., Cuéllar, J., Domancic, S., & Villanueva, J. (2018). Revisiones sistemáticas: definición y nociones básicas. Revista Clínica Periodoncia Implantología y Rehabilitación Oral, 11(3), 184-186. https://doi.org/10.4067/S0719-01072018000300184 DOI: https://doi.org/10.4067/S0719-01072018000300184
Morova, N., Serin, S., Terzi, S., Saltan, M., Ozdemir Kucukcapraz, D., Sargin Karahancer, S., & Eriskin, E. (2016). Utility of polyparaphenylene terephtalamide fiber in hot mix asphalt as a fiber. Construction and Building Materials, 107, 87-94. https://doi.org/10.1016/j.conbuildmat.2015.12.193 DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.193
Motaung, T., Linganiso, L., & Mohomane, S. (2017). Agricultural waste fibers and biopolymer matrices used in biocomposites. In Biocomposites: Properties, Performance and Applications (pp. 11-26).
Navaneethakrishnan, G., Karthikeyan, T., Saravanan, S., Selvam, V., Parkunam, N., Sathishkumar, G., & Jayakrishnan, S. (2020).Structural analysis of natural fiber reinforced polymer matrix composite. Materials Today Procedings, 21(1), 7-9. https://doi.org/10.1016/j.matpr.2019.05.295 DOI: https://doi.org/10.1016/j.matpr.2019.05.295
Parimita, P. (2020). Influence of natural fibers as additive on characteristics of stone mastic asphalt. IOP Conference Series: Materials Science and Engineering, 970(1), 012021. https://doi.org/10.1088/1757-899X/970/1/012021 DOI: https://doi.org/10.1088/1757-899X/970/1/012021
Pirmohammad, S., Majd Shokorlou, Y., & Amani, B. (2020). Influence of natural fibers (kenaf and goat wool) on mixed mode I/II fracture strength of asphalt mixtures. Construction and Building Materials, 239, 117850. https://doi.org/10.1016/j. conbuildmat.2019.117850 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117850
Saba, N., Jawaid, M., Alothman, O. Y., & Paridah, M. T. (2016). Review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials, 106(Complete), 149-159. https://doi.org/10.1016/j.conbuildmat.2015.12.075 DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.075
Salit, M., Jawaid, M., Yusoff, N., & Hoque, M. (2015). Manufacturing of Natural Fibre Reinforced Polymer Composites, 1st ed.; Springer International Publishing AG. DOI: https://doi.org/10.1007/978-3-319-07944-8
Sánchez, M., Fernández, M., & Díaz, J. (2021). Técnicas e instrumentos de recolección de información: análisis y procesamiento realizado por el investigador cualitativo. Revista Científica Israel, 8(1), 113-128. https://bit.ly/3ROoqLH DOI: https://doi.org/10.35290/rcui.v8n1.2021.400
SathishKumar, P., Neethimanickam, I., Robinston Jeyasingh Swikker, R., & Maheswari, K. S. (2020). Strength and behavior analysis of honey comb sandwich composite structure. International Journal of Scientific and Technology Research, 9(1), 2668-2675. https://lc.cx/Cf-d5x
Tadasse, S., Abdellah, K., Prasanth, A., Goytom, D., & Kumar Deepati, A. (2018). Mechanical characterization of natural fiber reinforced composites: an alternative for Rural House Roofing’s. Mater. Materials Today: Proceedings, 5(11), Part 3, 25016-25026,. https://doi.org/10.1016/j.matpr.2018.10.302 DOI: https://doi.org/10.1016/j.matpr.2018.10.302
Verma, D., & Senal, I. (2019). Natural fiber-reinforced polymer composites: Feasibiliy study for sustainable automotive industries. In Biomass, Biopolymer-Based Materials, and Bioenergy (pp. 103-122). Elsevier. DOI: https://doi.org/10.1016/B978-0-08-102426-3.00006-0
Vigneshwaran, S., Sundarakannan, R., John, K. M., Joel Johnson, R. D., Prasath, K. A., Ajith, S., Arumugaprabu, V., & Uthayakumar, M. (2020). Recent Advancement in the Natural Fiber Polymer Composites: A Comprehensive. Review Journal Clean. Product, 277, 124109. https://doi.org/10.1007/978-981-19-6945-4_52 DOI: https://doi.org/10.1016/j.jclepro.2020.124109
Vogele, S., Grajewski, M., Govorukha, K., Rübbelke, D., Ahi, P., Searcy, C., Draxler, M.,Schenk, J., Bürgler, T., Sormann, A., Co, T., Rynikiewicz, C., Hafeez, K., Griffiths, M., Griffiths, J., Naim, M. M., Conejo, A. N., Birat, J. P., Dutta, A., & Glavič, P. (2020). Energy Use in the Iron and Steel Industry. Journal of Cleaner Production, 32(2), 285. https://lc.cx/WrPPPz
Wang, X., Zhou, H., Hu, X., Shen, S., & Dong, B. (2021). Investigation of the Performance of Ceramic Fiber Modified Asphalt Mixture. Advances in Civil Engineering, 8833468. https://doi.org/10.1155/2021/8833468 DOI: https://doi.org/10.1155/2021/8833468
Zhang, Z., Cai, S., Li, Y., Wang, Z., Long, Y., Yu, T., & Shen, Y. (2020). High performances of plant fiber reinforced composites—A new insight from hierarchical microstructures. Composites Science and Technology, 194, 108151. https://doi.org/10.1016/j.compscitech.2020.108151 DOI: https://doi.org/10.1016/j.compscitech.2020.108151
Ziari, H., Saghafi, Y., Moniri, A., & Bahri, P. (2020). The effect of polyolefin-aramid fibers on performance of hot mix asphalt. Petroleum Science and Technology, 38(3), 170-176. https://doi.org/10.1080/10916466.2019.1697286 DOI: https://doi.org/10.1080/10916466.2019.1697286
Zindani, D., & Kumar, K. (2019). An insight into additive manufacturing of fiber reinforced polymer composite. International Journal of Lightweight Materials and Manufacture, 2, 267-278. https://doi.org/10.1016/J.IJLMM.2019.08.004 DOI: https://doi.org/10.1016/j.ijlmm.2019.08.004
Zuccarello, B., & Zingales, M. (2017). Toward high performance renewable agave reinforced biocomposites: Optimization of fiber performance and fiber-matrix adhesion analysis. Composites Part B. Engineering, 122, 109-120. https://doi.org/10.1016/j.compositesb.2017.04.011 DOI: https://doi.org/10.1016/j.compositesb.2017.04.011
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Justiniano Félix Palomino Quispe, Leopoldo Choque Flores, Luis Villar Requis Carbajal, Alisson Lizbeth Castro León

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).