Polymeter fibers and natural fibers for vehicular pavement structures in Perú

Autores/as

DOI:

https://doi.org/10.31637/epsir-2024-1787

Palabras clave:

fibers, polymer, natural, vehicle, Perú, biodegradability, low cost, lower density

Resumen

Introduction: Polymeter fibers and natural fibers for vehicular pavement structures in Peru. The objective of this systematic review was to analyze technical information on polymer fibers and natural fibers for vehicular pavement structures in Peru. The applied methodology had a qualitative bibliographic approach, whose design was framed in the literature review and documentary analysis of fifty scientific productions, published in journals indexed to the databases: Scopus, and scielo. The main results indicate that natural fibers and polymer are a good option for reinforcing flexible pavements, since good results were obtained in the tests carried out.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aljubory, A., Abbas, A. S., & Bdan, A. (2020). Effect of palm fibers on asphalt pavement properties. Materials Science and Engineering Conference Series, 881, 012176. https://doi.org/10.1088/1757899X/881/1/012176 DOI: https://doi.org/10.1088/1757-899X/881/1/012176

Alnadish, A. M., & Aman, M. Y. (2019). Evaluation of aramid fibre-reinforced asphalt mixtures. Lecture Notes in Civil Engineering, 9, 1377-1388. https://lc.cx/8Qob0w DOI: https://doi.org/10.1007/978-981-10-8016-6_99

Bajwa, D. S., & Bhattacharjee, S. (2016). Current Progress, Trends and Challenges in the Application of Biofiber Composites by Automotive Industry. Journal of Natural Fibers, 13(6), 660-669. https://doi.org/10.1080/15440478.2015.1102790

Bueno, M., & Poulikakos, L. (2020). Chemo-mechanical evaluation of asphalt mixtures reinforced with synthetic fibers. Frontiers in Built Environment, 6, 41. https://doi.org/10.3389/fbuil.2020.00041 DOI: https://doi.org/10.3389/fbuil.2020.00041

Cavalcanti, D., Banea, M., Neto, J. S., Lima, R., da Silva, L., & Carbas, R. (2019). Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Compos. Part B Engineered, 175, 107149. http://dx.doi.org/10.1016/j.compositesb.2019.107149 DOI: https://doi.org/10.1016/j.compositesb.2019.107149

Colares do Vale, A., Toé Casagrande, M., & Barbosa Soares, J. (2014). Behavior of natural fiber in stone matrix asphalt mixtures using two design methods. Journal of Materials in Civil Engineering, 26, 457-465. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000815 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000815

Cruz, J., & Fangueiro, R. (2016). Surface modification of natural fibers: a review. Procedia Engineering, 155, 285-288. https://doi.org/10.1016/J.PROENG.2016.08.030 DOI: https://doi.org/10.1016/j.proeng.2016.08.030

Chaudhary, V., & Ahmad, F. (2020). Review on plant fiber reinforced thermoset polymers for structural and frictional composites. Polymer Testing, 91, 106792. https://lc.cx/nz2u8D DOI: https://doi.org/10.1016/j.polymertesting.2020.106792

Chen, Z., Yi, J., Chen, Z., & Feng, D. (2019). Properties of asphalt binder modified by corn stalk fiber. Construction and Building Materials, 212, 225235. https://doi.org/10.1016/j.conbuildmat.2019.03.329 DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.329

Jariwala, H., & Jain, P. (2019). Review on mechanical behavior of natural fiber reinforced polymer composites and its applications. Journal of Reinforced Plastics and Composites, 38(10), 441-453. https://doi.org/10.1177/0731684419828524 DOI: https://doi.org/10.1177/0731684419828524

Kamaruddin, I., Napiah, M., & Nahi, M. H. (2016). The influence of moisture on the performance of polymer fibre-reinforced asphalt mixture. MATEC Web of Conferences, 78, 01040. https://doi.org/10.1051/matecconf/20167801040 DOI: https://doi.org/10.1051/matecconf/20167801040

Kar, D., Giri, J. P., & Panda, M. (2019). Performance evaluation of bituminous paving mixes containing sisal fiber as an additive. Transportation Infrastructure Geotechnology, 6(3), 189-206. https://doi.org/10.1007/s40515-01900079-6 DOI: https://doi.org/10.1007/s40515-019-00079-6

Kara De Maeijer, P., Soenen, H., Van den Bergh, W., Blom, J., Jacobs, G., & Stoop, J. (2019). Peat f ibers and finely ground peat powder for application in asphalt. Infrastructures, 4(1), 3. https://doi.org/10.3390/infrastructures4010003 DOI: https://doi.org/10.3390/infrastructures4010003

Karthi, N., Kumaresan, K., Sathish, S., Gokulkumar, S., Prabhu, L., & Vigneshkumar, N. (2019). An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Materials Today: Proceedings, 27, 2828-2834. https://doi.org/10.1016/j.matpr.2020.01.011 DOI: https://doi.org/10.1016/j.matpr.2020.01.011

Kassem, H., Saleh, N., Zalghout, A., & Chehab, G. (2018). Advanced characterization of asphalt concrete mixtures reinforced with synthetic f ibers. Journal of Materials in Civil Engineering, 30(11), 04018307. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002521 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002521

Khalid, M., Imran, R., Arif, Z., Akram, N., Arshad, H., Rashid, A., & Márquez, F. (2021). Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings, 11(3), 1-18. https://doi.org/10.3390/coatings11030293 DOI: https://doi.org/10.3390/coatings11030293

Kicińska, A., Bogacz, E., & Zimniewska, M. (2012). Review of Natural Fibers. Part I-Vegetable Fibers. Journal of Natural Fibers, 9(3), 150-167. https://doi.org/10.1080/15440478.2012.703370 DOI: https://doi.org/10.1080/15440478.2012.703370

Koronis, G., & Silva, A. (2018). Green composites for automotive applications, 3rd ed.; Elsevier Science & Technology.

Lee, C. H., Sapuan, S. M., & Hassan, M. R. (2017). Mechanical and thermal properties of kenaf fiber reinforced polypropylene/magnesium hydroxide composites. Journal of Engineered Fibers and Fabrics, 12(2), 50-58. https://journals.sagepub.com/doi/pdf/10.1177/155892501701200206 DOI: https://doi.org/10.1177/155892501701200206

Li, Z., Zhang, X., Fa, C., Zhang, Y., Xiong, J., & Chen, H. (2020). Investigation on characteristics and properties of bagasse fibers: Performances of asphalt mixtures with bagasse fibers. Construction and Building Materials, 248, 118648. https://lc.cx/xVjhdS DOI: https://doi.org/10.1016/j.conbuildmat.2020.118648

Lotfi, A., Li, H., Dao, D. V., & Prusty, G. (2019).Natural fiber–reinforced composites: a review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials,34(3), 089270571984454. https://doi.org/10.1177/0892705719844546 DOI: https://doi.org/10.1177/0892705719844546

Moreno, B., Muñoz, M., Cuéllar, J., Domancic, S., & Villanueva, J. (2018). Revisiones sistemáticas: definición y nociones básicas. Revista Clínica Periodoncia Implantología y Rehabilitación Oral, 11(3), 184-186. https://doi.org/10.4067/S0719-01072018000300184 DOI: https://doi.org/10.4067/S0719-01072018000300184

Morova, N., Serin, S., Terzi, S., Saltan, M., Ozdemir Kucukcapraz, D., Sargin Karahancer, S., & Eriskin, E. (2016). Utility of polyparaphenylene terephtalamide fiber in hot mix asphalt as a fiber. Construction and Building Materials, 107, 87-94. https://doi.org/10.1016/j.conbuildmat.2015.12.193 DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.193

Motaung, T., Linganiso, L., & Mohomane, S. (2017). Agricultural waste fibers and biopolymer matrices used in biocomposites. In Biocomposites: Properties, Performance and Applications (pp. 11-26).

Navaneethakrishnan, G., Karthikeyan, T., Saravanan, S., Selvam, V., Parkunam, N., Sathishkumar, G., & Jayakrishnan, S. (2020).Structural analysis of natural fiber reinforced polymer matrix composite. Materials Today Procedings, 21(1), 7-9. https://doi.org/10.1016/j.matpr.2019.05.295 DOI: https://doi.org/10.1016/j.matpr.2019.05.295

Parimita, P. (2020). Influence of natural fibers as additive on characteristics of stone mastic asphalt. IOP Conference Series: Materials Science and Engineering, 970(1), 012021. https://doi.org/10.1088/1757-899X/970/1/012021 DOI: https://doi.org/10.1088/1757-899X/970/1/012021

Pirmohammad, S., Majd Shokorlou, Y., & Amani, B. (2020). Influence of natural fibers (kenaf and goat wool) on mixed mode I/II fracture strength of asphalt mixtures. Construction and Building Materials, 239, 117850. https://doi.org/10.1016/j. conbuildmat.2019.117850 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117850

Saba, N., Jawaid, M., Alothman, O. Y., & Paridah, M. T. (2016). Review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials, 106(Complete), 149-159. https://doi.org/10.1016/j.conbuildmat.2015.12.075 DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.075

Salit, M., Jawaid, M., Yusoff, N., & Hoque, M. (2015). Manufacturing of Natural Fibre Reinforced Polymer Composites, 1st ed.; Springer International Publishing AG. DOI: https://doi.org/10.1007/978-3-319-07944-8

Sánchez, M., Fernández, M., & Díaz, J. (2021). Técnicas e instrumentos de recolección de información: análisis y procesamiento realizado por el investigador cualitativo. Revista Científica Israel, 8(1), 113-128. https://bit.ly/3ROoqLH DOI: https://doi.org/10.35290/rcui.v8n1.2021.400

SathishKumar, P., Neethimanickam, I., Robinston Jeyasingh Swikker, R., & Maheswari, K. S. (2020). Strength and behavior analysis of honey comb sandwich composite structure. International Journal of Scientific and Technology Research, 9(1), 2668-2675. https://lc.cx/Cf-d5x

Tadasse, S., Abdellah, K., Prasanth, A., Goytom, D., & Kumar Deepati, A. (2018). Mechanical characterization of natural fiber reinforced composites: an alternative for Rural House Roofing’s. Mater. Materials Today: Proceedings, 5(11), Part 3, 25016-25026,. https://doi.org/10.1016/j.matpr.2018.10.302 DOI: https://doi.org/10.1016/j.matpr.2018.10.302

Verma, D., & Senal, I. (2019). Natural fiber-reinforced polymer composites: Feasibiliy study for sustainable automotive industries. In Biomass, Biopolymer-Based Materials, and Bioenergy (pp. 103-122). Elsevier. DOI: https://doi.org/10.1016/B978-0-08-102426-3.00006-0

Vigneshwaran, S., Sundarakannan, R., John, K. M., Joel Johnson, R. D., Prasath, K. A., Ajith, S., Arumugaprabu, V., & Uthayakumar, M. (2020). Recent Advancement in the Natural Fiber Polymer Composites: A Comprehensive. Review Journal Clean. Product, 277, 124109. https://doi.org/10.1007/978-981-19-6945-4_52 DOI: https://doi.org/10.1016/j.jclepro.2020.124109

Vogele, S., Grajewski, M., Govorukha, K., Rübbelke, D., Ahi, P., Searcy, C., Draxler, M.,Schenk, J., Bürgler, T., Sormann, A., Co, T., Rynikiewicz, C., Hafeez, K., Griffiths, M., Griffiths, J., Naim, M. M., Conejo, A. N., Birat, J. P., Dutta, A., & Glavič, P. (2020). Energy Use in the Iron and Steel Industry. Journal of Cleaner Production, 32(2), 285. https://lc.cx/WrPPPz

Wang, X., Zhou, H., Hu, X., Shen, S., & Dong, B. (2021). Investigation of the Performance of Ceramic Fiber Modified Asphalt Mixture. Advances in Civil Engineering, 8833468. https://doi.org/10.1155/2021/8833468 DOI: https://doi.org/10.1155/2021/8833468

Zhang, Z., Cai, S., Li, Y., Wang, Z., Long, Y., Yu, T., & Shen, Y. (2020). High performances of plant fiber reinforced composites—A new insight from hierarchical microstructures. Composites Science and Technology, 194, 108151. https://doi.org/10.1016/j.compscitech.2020.108151 DOI: https://doi.org/10.1016/j.compscitech.2020.108151

Ziari, H., Saghafi, Y., Moniri, A., & Bahri, P. (2020). The effect of polyolefin-aramid fibers on performance of hot mix asphalt. Petroleum Science and Technology, 38(3), 170-176. https://doi.org/10.1080/10916466.2019.1697286 DOI: https://doi.org/10.1080/10916466.2019.1697286

Zindani, D., & Kumar, K. (2019). An insight into additive manufacturing of fiber reinforced polymer composite. International Journal of Lightweight Materials and Manufacture, 2, 267-278. https://doi.org/10.1016/J.IJLMM.2019.08.004 DOI: https://doi.org/10.1016/j.ijlmm.2019.08.004

Zuccarello, B., & Zingales, M. (2017). Toward high performance renewable agave reinforced biocomposites: Optimization of fiber performance and fiber-matrix adhesion analysis. Composites Part B. Engineering, 122, 109-120. https://doi.org/10.1016/j.compositesb.2017.04.011 DOI: https://doi.org/10.1016/j.compositesb.2017.04.011

Descargas

Publicado

2024-12-23

Cómo citar

Palomino Quispe, J. F., Choque Flores, L., Requis Carbajal, L. V., & Castro León, A. L. (2024). Polymeter fibers and natural fibers for vehicular pavement structures in Perú. European Public & Social Innovation Review, 9, 1–11. https://doi.org/10.31637/epsir-2024-1787

Número

Sección

Artículos Portada