Use of Organic Extracts as Effective Inhibitors of Carbonation Corrosion in Maritime Structures on the Coast of Peru

Autores/as

DOI:

https://doi.org/10.31637/epsir-2026-1960

Palabras clave:

Carbonation, inhibitors, corrosion, organic extracts, concrete, durability, Peru, maritime structures

Resumen

Introduction: Based on the problems presented regarding corrosion, the objective of this systematic review research was to evaluate the information collected on the use of organic extracts as inhibitors of carbonation corrosion in marine structures on the coast of Peru. Methodology: A descriptive study was carried out, with a qualitative approach based on a review of literature articles and the analysis of different research with a total of 80 scientific articles, including Scopus, WOS and Scielo, among the most important databases. Results: The most relevant findings indicate that organic extracts are effective as carbonation corrosion inhibitors in marine structures; however, there are still theoretical gaps regarding the optimal percentages for their application.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Aldair Enrique Sandoval Tamariz, Universidad César Vallejo

Civil engineer by profession with communication skills at all levels, with a Master's degree in Construction Management, specialization in research methodology, public and private project management, as well as publishing scientific articles in the country and abroad.

Fiorela Yselina Perez Pereda, Universidad César Vallejo

Civil engineer professional with communication skills at all levels, with a Master's degree in Construction Management, specialization in applied statistics and research methodology, publishes scientific articles in the country and abroad. I have the motivation to bring new scientific contributions to society and in the engineering field.

Citas

Ahchouch, H., El house, M., Al-Moubaraki, A. H., Noor, E. A., Hadfi, A., Driouiche, A., Bammou, L., Belkhaouda, M., Salghi, R., Chafiq, M., Chaouiki, A., & Ko, Y. G. (2024). From nature to protection: Unleashing the protective potential of Hedera helix leaves against corrosion in harsh acidic environments using experimental and theoretical insights. Arabian Journal of Chemistry, 17(2), 105593. https://doi.org/10.1016/j.arabjc.2023.105593 DOI: https://doi.org/10.1016/j.arabjc.2023.105593

Albíter, J., Vaca, R., Aguila, P., Yáñez, G., & Lugo, J. (2021). Flujo de CO2 y su relación con propiedades bioquímicas en cultivos hortícolas en invernadero. Ecosistemas y recursos agropecuarios, 7(3), 12. https://doi.org/10.19136/era.a7n3.2548

Al Otaibi, N., & Hammud, H. H. (2021). Corrosion Inhibition Using Harmal Leaf Extract as an Eco-Friendly Corrosion Inhibitor. Molecules, 26(22), 7024. https://doi.org/10.3390/molecules26227024 DOI: https://doi.org/10.3390/molecules26227024

Al-Sharabi, H., Bouhlal, F., Bouiti, K., Labjar, N., Zalaei, E., Dahrouch, A., Benabdellah, G., Mahi, M., Benmessaoud, B., Lotfi, E., Otmani, B., & El Hajjaji, S. (2022). Electrochemical and Thermodynamic Evaluation on Corrosion Inhibition of C38 steel in 1M HCl By the Rumex Ethanolic Extract. International Journal of Corrosion and Scale Inhibition, 11(1), 20. https://doi.org/10.17675/2305-6894-2022-11-1-23

Altunbaş Şahin, E. (2022). Experimental and theoretical studies of acridine orange as corrosion inhibitor for copper protection in acidic media. Journal of the Indian Chemical Society, 99(3), 100358. https://doi.org/10.1016/j.jics.2022.100358 DOI: https://doi.org/10.1016/j.jics.2022.100358

Assad, H., & Kumar, A. (2021). Understanding functional group effect on corrosion inhibition efficiency of selected organic compounds. Journal of Molecular Liquids, 344, 117755. https://doi.org/10.1016/j.molliq.2021.117755 DOI: https://doi.org/10.1016/j.molliq.2021.117755

Ben Harb, M., Abubshait, S., Etteyeb, N., Kamoun, M., & Dhouib, A. (2020). Olive leaf extract as a green corrosion inhibitor of reinforced concrete contaminated with seawater. Arabian Journal of Chemistry, 13(3), 4846-4856. https://doi.org/10.1016/j.arabjc.2020.01.016 DOI: https://doi.org/10.1016/j.arabjc.2020.01.016

Carneiro Valério, A., & Roberto do Lago Helene, P. (2025). Avaliação da alteração da frente de carbonatação de estrutura de concreto submetida a fuligem de incêndio. Revista ALCONPAT, 15(1), 19-34. https://doi.org/10.21041/ra.v15i1.722 DOI: https://doi.org/10.21041/ra.v15i1.722

Chen, X., Yu, C., Wang, L., & Yu, B. (2024). A comprehensive review of the bio-corrosion mechanisms, hydrodynamics and antifouling measures on marine concrete. Ocean Engineering, 310, 118696. https://doi.org/10.1016/j.oceaneng.2024.118696 DOI: https://doi.org/10.1016/j.oceaneng.2024.118696

Dalmora, G. P. V., Borges Filho, E. P., Maraschin Conterato, A. A., Roso, W. S., Pereira, C. E., & Dettmer, A. (2025). Methods of corrosion prevention for steel in marine environments: A review. Results in Surfaces and Interfaces, 18, 100430. https://doi.org/10.1016/j.rsurfi.2025.100430 DOI: https://doi.org/10.1016/j.rsurfi.2025.100430

Dai, J., & An, X. (2023). Corrosion Inhibition Properties of Camellia chrysantha Flower Extract for Q235S in 1 M HCl solution. International Journal of Electrochemical Science, 100080. https://doi.org/10.1016/j.ijoes.2023.100080 DOI: https://doi.org/10.1016/j.ijoes.2023.100080

Deyab, M. A. (2019). Hydroxyethyl cellulose as efficient organic inhibitor of zinc–carbon battery corrosion in ammonium chloride solution: Electrochemical and surface morphology studies. Journal of Power Sources, 280,

190-194. https://doi.org/10.1016/j.jpowsour.2015.01.107 DOI: https://doi.org/10.1016/j.jpowsour.2015.01.107

Deyab, M. A., & Mohsen, Q. (2023). Inhibitory Capabilities of Sweet Yellow Capsicum Extract toward the Rusting of Steel Rebars in Cement Pore Solution. ACS Omega. https://doi.org/10.1021/acsomega.2c06639 DOI: https://doi.org/10.1021/acsomega.2c06639

Dong, H., Du, M., Li, G., & Wang, J. (2024). Study on the corrosion mechanism of X65 steel by manganese-oxidizing bacteria in marine environment. Corrosion Science, 112669. https://doi.org/10.1016/j.corsci.2024.112669 DOI: https://doi.org/10.1016/j.corsci.2024.112669

El Ibrahimi, B., Soumoue, A., Jmiai, A., Bourzi, H., Oukhrib, R., El Mouaden, K., El Issami, S., & Bazzi, L. (2019). Computational study of some triazole derivatives (un- and protonated forms) and their copper complexes in corrosion inhibition process. Journal of Molecular Structure, 1125, 93-102. https://doi.org/10.1016/j.molstruc.2016.06.057 DOI: https://doi.org/10.1016/j.molstruc.2016.06.057

Electrochemical and Thermodynamic Evaluation on Corrosion Inhibition of C38 in 1M HCl By the Rumex Ethanolic Extract. (2022). International Journal of Corrosion and Scale Inhibition, 11(1). https://doi.org/10.17675/2305-6894-2022-11-1-23 DOI: https://doi.org/10.17675/2305-6894-2022-11-1-23

Farahani, A., Taghaddos, H., & Shekarchi, M. (2019). Prediction of long-term chloride diffusion in silica fume concrete in a marine environment. Cement and Concrete Composites, 59,

10-17. https://doi.org/10.1016/j.cemconcomp.2015.03.006 DOI: https://doi.org/10.1016/j.cemconcomp.2015.03.006

Feng, L., Zhang, S., Hao, L., Du, H., Pan, R., Huang, G., & Liu, H. (2022). Cucumber (Cucumis sativus L.) Leaf Extract as a Green Corrosion Inhibitor for Carbon Steel in Acidic Solution: Electrochemical, Functional and Molecular Analysis. Molecules, 27(12), 3826. https://doi.org/10.3390/molecules27123826 DOI: https://doi.org/10.3390/molecules27123826

Flores-Nicolás, A., Flores-Nicolás, M., & Uruchurtu-Chavarín, J. (2021). Corrosion effect on reinforced concrete with the addition of graphite powder and its evaluation on physical-electrochemical properties. Revista ALCONPAT, 11(1), 18-33. https://doi.org/10.21041/ra.v11i1.501 DOI: https://doi.org/10.21041/ra.v11i1.501

Fuhaid, A. F. A., & Niaz, A. (2022). Carbonation and Corrosion Problems in Reinforced Concrete Structures. Buildings, 12(5), 586. https://doi.org/10.3390/buildings12050586 DOI: https://doi.org/10.3390/buildings12050586

Garcés Terradillos, P., Climent, M.-Á., Carmona, J., & Sánchez Rojas, M. J. (2021). Alargamiento de la vida útil de estructuras de hormigón armado expuestas a ambientes marinos mediante la aplicación de técnicas electroquímicas. Revista ALCONPAT, 11(1),

48-60. https://doi.org/10.21041/ra.v11i1.518 DOI: https://doi.org/10.21041/ra.v11i1.518

Gaylarde, C. C., & Ortega-Morales, B. O. (2023). Biodeterioration and Chemical Corrosion of Concrete in the Marine Environment: Too Complex for Prediction. Microorganisms, 11(10), 2438.

https://doi.org/10.3390/microorganisms11102438 DOI: https://doi.org/10.3390/microorganisms11102438

Gudainiyan, J., & Kishore, K. (2022). A review on cement concrete strength incorporated with agricultural waste. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.10.179 DOI: https://doi.org/10.1016/j.matpr.2022.10.179

Guo, D., Wang, Y., Zhang, Y., Duan, J., Guan, F., & Hou, B. (2024). Effects of marine eutrophication environment on microbial corrosion: A review. Marine Pollution Bulletin, 205, 116637. https://doi.org/10.1016/j.marpolbul.2024.116637 DOI: https://doi.org/10.1016/j.marpolbul.2024.116637

Hakeem, I. Y., Amin, M., Agwa, I. S., Abd-Elrahman, M. H., & Abdelmagied, M. F. (2023). Using a combination of industrial and agricultural wastes to manufacture sustainable ultra-high-performance concrete. Case Studies in Construction Materials, 19, Artículo e02323. https://doi.org/10.1016/j.cscm.2023.e02323 DOI: https://doi.org/10.1016/j.cscm.2023.e02323

He, J., Kawasaki, S., & Achal, V. (2020). The Utilization of Agricultural Waste as Agro-Cement in Concrete: A Review. Sustainability, 12(17), 6971. https://doi.org/10.3390/su12176971 DOI: https://doi.org/10.3390/su12176971

Hernández-Sánchez, S. E., Flores-De los Rios, J. P., Monreal-Romero, H. A., Flores-Holguin, N. R., Rodríguez-Valdez, L. M., Sánchez-Carrillo, M., Delgado, A. D., & Chacón-Nava, J. G. (2024). Ruta graveolens Plant Extract as a Green Corrosion Inhibitor for 304 SS in 1 M HCl: Experimental and Theoretical Studies. Metals, 14(11), 1267. https://doi.org/10.3390/met14111267 DOI: https://doi.org/10.3390/met14111267

Hijazi, K. M., Abdel-Gaber, A. M., Younes, G. O., & Habchi, R. (2021). Comparative study of the effect of an acidic anion on the mild steel corrosion inhibition using Rhus Coriaria plant extract and its quercetin component. Portugaliae Electrochimica Acta, 39(4),

237-252. https://doi.org/10.4152/pea.2021390402 DOI: https://doi.org/10.4152/pea.2021390402

Hossain, N., Aminul Islam, M., & Asaduzzaman Chowdhury, M. (2023). Advances of Plant-Extracted Inhibitors in Metal Corrosion Reduction – Future Prospects and Challenges. Results in Chemistry, 100883. https://doi.org/10.1016/j.rechem.2023.100883 DOI: https://doi.org/10.1016/j.rechem.2023.100883

Hossain, N., Chowdhury, M. A., Iqbal, A. K. M. P., Islam, M. S., Sheikh Omar, N. Y., & Saifullah, A. Z. A. (2021). Paederia Foetida leaves extract as a green corrosion inhibitor for mild steel in hydrochloric acid solution. Current Research in Green and Sustainable Chemistry, 4, 100191. https://doi.org/10.1016/j.crgsc.2021.100191 DOI: https://doi.org/10.1016/j.crgsc.2021.100191

Holla, B., Mahesh, R., Manjunath, H. R., & Anjanapura, V. R. (2024). Plant Extracts as Green Corrosion Inhibitors for Different Kinds of Steel: A Review. Heliyon, Artículo e33748. https://doi.org/10.1016/j.heliyon.2024.e33748 DOI: https://doi.org/10.1016/j.heliyon.2024.e33748

Hu, J., Zhu, Y., Hang, J., Zhang, Z., Ma, Y., Huang, H., Yu, Q., & Wei, J. (2021). The effect of organic core–shell corrosion inhibitors on corrosion performance of the reinforcement in simulated concrete pore solution. Construction and Building Materials, 267, 121011. https://doi.org/10.1016/j.conbuildmat.2020.121011 DOI: https://doi.org/10.1016/j.conbuildmat.2020.121011

Jauregui, D., Lezama, E., & Vásquez, A. (2023). “Uso del inhibidor de nitrito de calcio y/o uso del acero galvanizado para evitar la corrosión del acero del concreto armado”. LACCEI, 21(1), 8.

https://laccei.org/LACCEI2023-BuenosAires/all-papers/Contribution_475_a.pdf

Karki, R., Bajgai, A. K., Khadka, N., Thapa, O., Mukhiya, T., Oli, H. B., & Bhattarai, D. P. (2022). Acacia catechu Bark Alkaloids as Novel Green Inhibitors for Mild Steel Corrosion in a One Molar Sulphuric Acid Solution. Electrochem, 3(4),

668-687. https://doi.org/10.3390/electrochem3040044 DOI: https://doi.org/10.3390/electrochem3040044

Karki, N., Neupane, S., Kumar Gupta, D., Kumari Das, A., Singh, S., Maiya Koju, G., Choudhary, Y., & Prasad Yadav, A. (2021). Berberine Isolated from Mahonia Nepalensis as an Eco-Friendly and Thermally Stable Corrosion Inhibitor for Mild Steel in Acid Medium. Arabian Journal of Chemistry, 103423. https://doi.org/10.1016/j.arabjc.2021.103423 DOI: https://doi.org/10.1016/j.arabjc.2021.103423

Kaya, F., Solmaz, R., & Geçibesler, İ. H. (2023). Investigation of adsorption, corrosion inhibition, synergistic inhibition effect and stability studies of Rheum ribes leaf extract on mild steel in 1 M HCl solution. Journal of the Taiwan Institute of Chemical Engineers, 143, 104712. https://doi.org/10.1016/j.jtice.2023.104712 DOI: https://doi.org/10.1016/j.jtice.2023.104712

Khalife, E., Sabouri, M., Kaveh, M., & Szymanek, M. (2024). Recent Advances in the Application of Agricultural Waste in Construction. Applied Sciences, 14(6), 2355. https://doi.org/10.3390/app14062355 DOI: https://doi.org/10.3390/app14062355

Kobbekaduwa, D., Nanayakkara, O., Krevaikas, T., & Di Sarno, L. (2024). Effect of organic corrosion inhibitors on the behaviour of repair mortars and reinforcement corrosion. Construction and Building Materials, 451, 138787. https://doi.org/10.1016/j.conbuildmat.2024.138787 DOI: https://doi.org/10.1016/j.conbuildmat.2024.138787

Lima, K. C. d. S. d., Paiva, V. M., Perrone, D., Ripper, B., Simões, G., Rocco, M. L. M., Veiga, A. G. d., & D’Elia, E. (2020). Glycine max meal extracts as corrosion inhibitor for mild steel in sulphuric acid solution. Journal of Materials Research and Technology, 9(6), 12756–12772. https://doi.org/10.1016/j.jmrt.2020.09.019 DOI: https://doi.org/10.1016/j.jmrt.2020.09.019

Liu, C. (2022). Trans-1,4-polyisoprene (TPI)) Extracted from Eucommia bark as Natural Corrosion Inhibitor for Carbon Steel in the Simulated Concrete Pore Solution. International Journal of Electrochemical Science, ArticleID:220615. https://doi.org/10.20964/2022.06.34 DOI: https://doi.org/10.20964/2022.06.34

Liao, B., Ma, S., Zhang, S., Li, X., Quan, R., Wan, S., & Guo, X. (2023). Fructus cannabis protein extract powder as a green and high effective corrosion inhibitor for Q235 carbon steel in 1 M HCl solution. International Journal of Biological Macromolecules, 124358. https://doi.org/10.1016/j.ijbiomac.2023.124358 DOI: https://doi.org/10.1016/j.ijbiomac.2023.124358

Liu, S., Gao, Z., Ding, G., Dong, C., Qu, Z., Yang, H., Song, L., Zhang, F., Wang, L., Sun, D., & Zhang, B. (2025). Comparison of the short-term corrosion behavior and mechanism of 40CrNiMoA steel in the marine atmospheric zone and the splash zone. Materials Today Communications, 42, 111346. https://doi.org/10.1016/j.mtcomm.2024.111346 DOI: https://doi.org/10.1016/j.mtcomm.2024.111346

Li, Q., & Zhang, X. (2024). Effects of Agricultural Trade on Reducing Carbon Emissions under the “Dual Carbon” Target: Evidence from China. Agriculture, 14(8), 1274. https://doi.org/10.3390/agriculture14081274 DOI: https://doi.org/10.3390/agriculture14081274

Madaci, A., Ferkous, H., Sedik, A., Delimi, A., Boulechfar, C., Belakhdar, A., Berredjem, M., Aymen Chaouch, M., Alam, M., Majdoub, H., Jaffrezic-Renault, N., & Benguerba, Y. (2023). Experimental and theoretical study of polysaccharides extracted from prickly pear nopales Pulp (PPUN) of Opuntia ficus-indica as corrosion inhibitors. Journal of Molecular Liquids, 122272. https://doi.org/10.1016/j.molliq.2023.122272 DOI: https://doi.org/10.1016/j.molliq.2023.122272

Marzorati, S., Verotta, L., & Trasatti, S. (2019). Green Corrosion Inhibitors from Natural Sources and Biomass Wastes. Molecules, 24(1), 48. https://doi.org/10.3390/molecules24010048 DOI: https://doi.org/10.3390/molecules24010048

Meng, Y., Li, S., & Zhang, Z. (2024). Inhibition performance of uniconazole on steel corrosion in simulated concrete pore solution: An eco-friendly way for steel protection. Heliyon, 10(3), Artículo e24688. https://doi.org/10.1016/j.heliyon.2024.e24688 DOI: https://doi.org/10.1016/j.heliyon.2024.e24688

Mirsayapov, I., Yakupov, S., & Hassoun, M. (2020). About concrete and reinforced concrete corrosion. IOP Conference Series: Materials Science and Engineering, 890, 012061. https://doi.org/10.1088/1757-899x/890/1/012061 DOI: https://doi.org/10.1088/1757-899X/890/1/012061

Mwakalesi, A., & Nyangi, M. (2020). Effective Corrosion Inhibition of Mild Steel in an Acidic Environment Using an Aqueous Extract of Macadamia Nut Green Peel Biowaste †. MDPI, 31(1), 7. https://doi.org/10.3390/ASEC2022-13804 DOI: https://doi.org/10.3390/ASEC2022-13804

Niu, G., Yuan, R., Wang, E., Yang, X., Liu, Z., Li, Z., Zhang, Z., Gong, N., Li, K., Su, B., Zhang, J., Wu, H., Li, X., & Murr, L. E. (2024). Unraveling the influence of Mo on the corrosion mechanism of Ni-advanced weathering steel in harsh marine atmospheric environments. Journal of Materials Science & Technology, 195(1), 21. https://doi.org/10.1016/j.jmst.2024.02.021 DOI: https://doi.org/10.1016/j.jmst.2024.02.021

Oli, H. B., Thapa Magar, J., Khadka, N., Subedee, A., Bhattarai, D. P., & Pant, B. (2022). Coriaria nepalensis Stem Alkaloid as a Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution. Electrochem, 3(4), 713-727. https://doi.org/10.3390/electrochem3040047 DOI: https://doi.org/10.3390/electrochem3040047

Pan, C., Chen, N., He, J., Liu, S., Chen, K., Wang, P., & Xu, P. (2020). Effects of corrosion inhibitor and functional components on the electrochemical and mechanical properties of concrete subject to chloride environment. Construction and Building Materials, 260, 119724. https://doi.org/10.1016/j.conbuildmat.2020.119724 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119724

Pinto Costa, R., Simas Franchetto, A., Smolinski Gouveia, A. J., Ziegler, F., Queiros Pessoa, K., & Garcez, M. R. (2022). Previsão da vida útil de estruturas de concreto com base em modelos para avanço da frente de carbonatação. Revista ALCONPAT, 12(1). https://doi.org/10.21041/ra.v12i1.558 DOI: https://doi.org/10.21041/ra.v12i1.558

Pustaj, G. (2019). Olive Leaf Extract as a Corrosion Inhibitor of Carbon Steel in CO2-Saturated Chloride–Carbonate Solution. International Journal of Electrochemical Science, 7811-7829. https://doi.org/10.20964/2016.09.25 DOI: https://doi.org/10.20964/2016.09.25

Quispe, C., Lino, D., Rodríguez, J., & Hinostroza, A. (2021). Concrete Cracking Control in Underwater Marine Structures using Basalt Fiber. IOP Conference Series: Materials Science and Engineering, 1054(1), 012008. https://doi.org/10.1088/1757-899x/1054/1/012008 DOI: https://doi.org/10.1088/1757-899X/1054/1/012008

Rocha Sandoval, C. A., & Ocrospoma Callupe, F. N. (2024). Patologías del Concreto en un Canal de Riego. Ciencia Latina Revista Científica Multidisciplinar, 8(4), 9084-9095. https://doi.org/10.37811/cl_rcm.v8i4.13050 DOI: https://doi.org/10.37811/cl_rcm.v8i4.13050

Rucana Guadalupe, E., Delgado Calderón, G. F., Campos Vasquez, N., & Neyra Torres, J. L. (2023). Influence of nanomaterial (Zinc Oxide) on the durability of conventional concrete. In 21st LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI 2023): “Leadership in Education and Innovation in Engineering in the Framework of Global Transformations: Integration and Alliances for Integral Development”. Latin American and Caribbean Consortium of Engineering Institutions. https://doi.org/10.18687/laccei2023.1.1.782 DOI: https://doi.org/10.18687/LACCEI2023.1.1.782

Romero-Sáez, M. (2022). Los residuos agroindustriales, una oportunidad para la economía circular. TecnoLógicas, 25(54), Artículo e2505. https://doi.org/10.22430/22565337.2505 DOI: https://doi.org/10.22430/22565337.2505

Ramananda Singh, M., Gupta, P., & Gupta, K. (2019). The litchi (Litchi Chinensis) peels extract as a potential green inhibitor in prevention of corrosion of mild steel in 0.5 M H2SO4 solution. Arabian Journal of Chemistry, 12(7),

1035-1041. https://doi.org/10.1016/j.arabjc.2015.01.002 DOI: https://doi.org/10.1016/j.arabjc.2015.01.002

Rodríguez-Clemente, E., González-Nava, V. J., Angeles-Beltran, D., Humberto, C. C., Palomar-Pardavé, M., Landeros-Martínez, L. L., Flores-De los Ríos, J. P., & González-Rodríguez, J. G. (2024). Electrochemical and Theoretical evaluation of Dihydro-Benzoimidazoquinazolines as corrosion inhibitors for API X-120 steel in acid medium. Journal of Molecular Structure, 138824. https://doi.org/10.1016/j.molstruc.2024.138824 DOI: https://doi.org/10.1016/j.molstruc.2024.138824

Soares, M., Faria, L., Miranda, T., Pereira, E., Vilarinho, C., & Carvalho, J. (2025). The potential of agri-food waste to solve construction's environmental problems: A review. Cleaner and Circular Bioeconomy, 10, 100138. https://doi.org/10.1016/j.clcb.2025.100138 DOI: https://doi.org/10.1016/j.clcb.2025.100138

Sheng, H., Jiang, X., Li, H., Cui, H., Zhao, Z., Guo, H., & Li, L. (2022). Investigation of 7075 Aluminum Alloy Corrosion in Marine Environment. International Journal of Electrochemical Science, 17(5), 11. https://doi.org/10.20964/2022.05.56 DOI: https://doi.org/10.20964/2022.05.56

Shevtsov, D., Cao, N. L., Nguyen, V. C., Nong, Q. Q., Le, H. Q., Nguyen, D. A., Zartsyn, I., & Kozaderov, O. (2022). Progress in Sensors for Monitoring Reinforcement Corrosion in Reinforced Concrete Structures. A Review. Sensors, 22(9), 3421. https://doi.org/10.3390/s22093421 DOI: https://doi.org/10.3390/s22093421

Sorlini, S., Bigoni, R., Collivignarelli, M. C., & Berbenni, P. (2019). Drinking water quality assessment and corrosion mitigation in the hospital water supply system of Chacas Village (Peru). Ambiente e Agua. An Interdisciplinary Journal of Applied Science, 9(3). https://doi.org/10.4136/ambi-agua.1407 DOI: https://doi.org/10.4136/ambi-agua.1407

Shang, Z., & Zhu, J. (2021). Overview on plant extracts as green corrosion inhibitors in the oil and gas fields. Journal of Materials Research and Technology, 15,

5078-5094. https://doi.org/10.1016/j.jmrt.2021.10.095 DOI: https://doi.org/10.1016/j.jmrt.2021.10.095

Shehnazdeep & Pradhan, B. (2022). A study on effectiveness of inorganic and organic corrosion inhibitors on rebar corrosion in concrete: A review. Materials Today: Proceedings, 65, 7. https://doi.org/10.1016/j.matpr.2022.04.296 DOI: https://doi.org/10.1016/j.matpr.2022.04.296

Teymouri, F., Allahkaram, S. R., Shekarchi, M., Azamian, I., & Johari, M. (2021). A comprehensive study on the inhibition behaviour of four carboxylate-based corrosion inhibitors focusing on efficiency drop after the optimum concentration for carbon steel in the simulated concrete pore solution. Construction and Building Materials, 296, 123702. https://doi.org/10.1016/j.conbuildmat.2021.123702 DOI: https://doi.org/10.1016/j.conbuildmat.2021.123702

Tian, H., Cui, Z., Ma, H., Zhao, P., Yan, M., Wang, X., & Cui, H. (2022). Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones. Corrosion Science, 206, 19. https://doi.org/10.1016/j.corsci.2022.110490 DOI: https://doi.org/10.1016/j.corsci.2022.110490

Tian, Y., Bao, J., Xie, D., Wang, B., Zhang, P., Zhao, T., & Lei, D. (2023). The effects of organic corrosion inhibitor on concrete properties and frost resistance. Journal of Building Engineering, 65, 105762. https://doi.org/10.1016/j.jobe.2022.105762 DOI: https://doi.org/10.1016/j.jobe.2022.105762

Tian, Y., Guo, W., Wang, W., Wang, B., Zhang, P., & Zhao, T. (2023). Influence of organic corrosion inhibitors on steel corrosion in concrete under the coupled action of freeze–thaw cycles and chloride attack. Construction and Building Materials, 368, 130385. https://doi.org/10.1016/j.conbuildmat.2023.130385 DOI: https://doi.org/10.1016/j.conbuildmat.2023.130385

Wang, X., Liu, J., Jin, M., Yan, Y., Tang, J., & Jin, Z. (2024). A review of organic corrosion inhibitors for resistance under chloride attacks in reinforced concrete: Background, Mechanisms and Evaluation methods. Construction and Building Materials, 433, 136583. https://doi.org/10.1016/j.conbuildmat.2024.136583 DOI: https://doi.org/10.1016/j.conbuildmat.2024.136583

Wang, Y., Qiang, Y., Zhi, H., Ran, B., & Zhang, D. (2022). Evaluating the synergistic effect of maple leaves extract and iodide ions on corrosion inhibition of Q235 steel in H2SO4 solution. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2022.10.030 DOI: https://doi.org/10.1016/j.jiec.2022.10.030

Wang, Q., Wu, X., Zheng, H., Liu, L., Zhang, Q., Zhang, A., Yan, Z., Sun, Y., Li, Z., & Li, X. (2022). Evaluation for Fatsia japonica leaves extract (FJLE) as green corrosion inhibitor for carbon steel in simulated concrete pore solutions. Journal of Building Engineering, 105568. https://doi.org/10.1016/j.jobe.2022.105568 DOI: https://doi.org/10.1016/j.jobe.2022.105568

Xu, Z., Wu, Y., Zhang, Z., Wang, Y., Hu, J., Ma, Y., Zhang, Z., Huang, H., Wei, J., Yu, Q., & Shi, C. (2023). A review on the research progress of LDHs as corrosion inhibitors for reinforced concrete. Journal of Building Engineering, 70, 106303. https://doi.org/10.1016/j.jobe.2023.106303 DOI: https://doi.org/10.1016/j.jobe.2023.106303

Yong, X., Lee, S., & Cho, H. (2021). Penetration properties and injecting conditions of corrosion inhibitor for concrete. Construction and Building Materials, 284, 9. https://doi.org/10.1016/j.conbuildmat.2021.122761 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122761

Zakeri, A., Bahmani, E., & Aghdam, A. S. R. (2022). Plant extracts as sustainable and green corrosion inhibitors for protection of ferrous metals in corrosive media: A mini review. Corrosion Communications. https://doi.org/10.1016/j.corcom.2022.03.002 DOI: https://doi.org/10.1016/j.corcom.2022.03.002

Zhao, W., Li, F., Lv, X., Chang, J., Shen, S., Dai, P., Xia, Y., & Cao, Z. (2023). Research Progress of Organic Corrosion Inhibitors in Metal Corrosion Protection. Crystals, 13(9), 1329. https://doi.org/10.3390/cryst13091329 DOI: https://doi.org/10.3390/cryst13091329

Zhao, T., Zhou, L., Li, Z., Wang, Z., & Shang, B. (2025). Diphenyl disulfide derivatives as high-efficiency corrosion inhibitors for copper in sulfuric acid: Experimental and theoretical studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 705, 135751. https://doi.org/10.1016/j.colsurfa.2024.135751 DOI: https://doi.org/10.1016/j.colsurfa.2024.135751

Zhou, Z., Min, X., Wan, S., Liu, J., Liao, B., & Guo, X. (2023). A novel green corrosion inhibitor extracted from waste feverfew root for carbon steel in H2SO4 solution. Results in Engineering, 17, 100971. https://doi.org/10.1016/j.rineng.2023.100971 DOI: https://doi.org/10.1016/j.rineng.2023.100971

Zhu, P., & Liu, M. (2023). Non-uniform Corrosion Mechanism and Residual Life Forecast of Marine Engineering Concrete Reinforcement. Journal of Engineering Research, 11(2), 7. https://doi.org/10.1016/j.jer.2023.100053 DOI: https://doi.org/10.1016/j.jer.2023.100053

Zomorodian, A., & Behnood, A. (2023). Review of Corrosion Inhibitors in Reinforced Concrete: Conventional and Green Materials. Buildings, 13(5), 1170. https://doi.org/10.3390/buildings13051170 DOI: https://doi.org/10.3390/buildings13051170

Descargas

Publicado

2025-12-12

Cómo citar

Sandoval Tamariz, A. E., & Perez Pereda, F. Y. (2025). Use of Organic Extracts as Effective Inhibitors of Carbonation Corrosion in Maritime Structures on the Coast of Peru. European Public & Social Innovation Review, 11, 1–22. https://doi.org/10.31637/epsir-2026-1960

Número

Sección

Artículos Portada