Use of Organic Extracts as Effective Inhibitors of Carbonation Corrosion in Maritime Structures on the Coast of Peru
DOI:
https://doi.org/10.31637/epsir-2026-1960Palabras clave:
Carbonation, inhibitors, corrosion, organic extracts, concrete, durability, Peru, maritime structuresResumen
Introduction: Based on the problems presented regarding corrosion, the objective of this systematic review research was to evaluate the information collected on the use of organic extracts as inhibitors of carbonation corrosion in marine structures on the coast of Peru. Methodology: A descriptive study was carried out, with a qualitative approach based on a review of literature articles and the analysis of different research with a total of 80 scientific articles, including Scopus, WOS and Scielo, among the most important databases. Results: The most relevant findings indicate that organic extracts are effective as carbonation corrosion inhibitors in marine structures; however, there are still theoretical gaps regarding the optimal percentages for their application.
Descargas
Citas
Ahchouch, H., El house, M., Al-Moubaraki, A. H., Noor, E. A., Hadfi, A., Driouiche, A., Bammou, L., Belkhaouda, M., Salghi, R., Chafiq, M., Chaouiki, A., & Ko, Y. G. (2024). From nature to protection: Unleashing the protective potential of Hedera helix leaves against corrosion in harsh acidic environments using experimental and theoretical insights. Arabian Journal of Chemistry, 17(2), 105593. https://doi.org/10.1016/j.arabjc.2023.105593 DOI: https://doi.org/10.1016/j.arabjc.2023.105593
Albíter, J., Vaca, R., Aguila, P., Yáñez, G., & Lugo, J. (2021). Flujo de CO2 y su relación con propiedades bioquímicas en cultivos hortícolas en invernadero. Ecosistemas y recursos agropecuarios, 7(3), 12. https://doi.org/10.19136/era.a7n3.2548
Al Otaibi, N., & Hammud, H. H. (2021). Corrosion Inhibition Using Harmal Leaf Extract as an Eco-Friendly Corrosion Inhibitor. Molecules, 26(22), 7024. https://doi.org/10.3390/molecules26227024 DOI: https://doi.org/10.3390/molecules26227024
Al-Sharabi, H., Bouhlal, F., Bouiti, K., Labjar, N., Zalaei, E., Dahrouch, A., Benabdellah, G., Mahi, M., Benmessaoud, B., Lotfi, E., Otmani, B., & El Hajjaji, S. (2022). Electrochemical and Thermodynamic Evaluation on Corrosion Inhibition of C38 steel in 1M HCl By the Rumex Ethanolic Extract. International Journal of Corrosion and Scale Inhibition, 11(1), 20. https://doi.org/10.17675/2305-6894-2022-11-1-23
Altunbaş Şahin, E. (2022). Experimental and theoretical studies of acridine orange as corrosion inhibitor for copper protection in acidic media. Journal of the Indian Chemical Society, 99(3), 100358. https://doi.org/10.1016/j.jics.2022.100358 DOI: https://doi.org/10.1016/j.jics.2022.100358
Assad, H., & Kumar, A. (2021). Understanding functional group effect on corrosion inhibition efficiency of selected organic compounds. Journal of Molecular Liquids, 344, 117755. https://doi.org/10.1016/j.molliq.2021.117755 DOI: https://doi.org/10.1016/j.molliq.2021.117755
Ben Harb, M., Abubshait, S., Etteyeb, N., Kamoun, M., & Dhouib, A. (2020). Olive leaf extract as a green corrosion inhibitor of reinforced concrete contaminated with seawater. Arabian Journal of Chemistry, 13(3), 4846-4856. https://doi.org/10.1016/j.arabjc.2020.01.016 DOI: https://doi.org/10.1016/j.arabjc.2020.01.016
Carneiro Valério, A., & Roberto do Lago Helene, P. (2025). Avaliação da alteração da frente de carbonatação de estrutura de concreto submetida a fuligem de incêndio. Revista ALCONPAT, 15(1), 19-34. https://doi.org/10.21041/ra.v15i1.722 DOI: https://doi.org/10.21041/ra.v15i1.722
Chen, X., Yu, C., Wang, L., & Yu, B. (2024). A comprehensive review of the bio-corrosion mechanisms, hydrodynamics and antifouling measures on marine concrete. Ocean Engineering, 310, 118696. https://doi.org/10.1016/j.oceaneng.2024.118696 DOI: https://doi.org/10.1016/j.oceaneng.2024.118696
Dalmora, G. P. V., Borges Filho, E. P., Maraschin Conterato, A. A., Roso, W. S., Pereira, C. E., & Dettmer, A. (2025). Methods of corrosion prevention for steel in marine environments: A review. Results in Surfaces and Interfaces, 18, 100430. https://doi.org/10.1016/j.rsurfi.2025.100430 DOI: https://doi.org/10.1016/j.rsurfi.2025.100430
Dai, J., & An, X. (2023). Corrosion Inhibition Properties of Camellia chrysantha Flower Extract for Q235S in 1 M HCl solution. International Journal of Electrochemical Science, 100080. https://doi.org/10.1016/j.ijoes.2023.100080 DOI: https://doi.org/10.1016/j.ijoes.2023.100080
Deyab, M. A. (2019). Hydroxyethyl cellulose as efficient organic inhibitor of zinc–carbon battery corrosion in ammonium chloride solution: Electrochemical and surface morphology studies. Journal of Power Sources, 280,
190-194. https://doi.org/10.1016/j.jpowsour.2015.01.107 DOI: https://doi.org/10.1016/j.jpowsour.2015.01.107
Deyab, M. A., & Mohsen, Q. (2023). Inhibitory Capabilities of Sweet Yellow Capsicum Extract toward the Rusting of Steel Rebars in Cement Pore Solution. ACS Omega. https://doi.org/10.1021/acsomega.2c06639 DOI: https://doi.org/10.1021/acsomega.2c06639
Dong, H., Du, M., Li, G., & Wang, J. (2024). Study on the corrosion mechanism of X65 steel by manganese-oxidizing bacteria in marine environment. Corrosion Science, 112669. https://doi.org/10.1016/j.corsci.2024.112669 DOI: https://doi.org/10.1016/j.corsci.2024.112669
El Ibrahimi, B., Soumoue, A., Jmiai, A., Bourzi, H., Oukhrib, R., El Mouaden, K., El Issami, S., & Bazzi, L. (2019). Computational study of some triazole derivatives (un- and protonated forms) and their copper complexes in corrosion inhibition process. Journal of Molecular Structure, 1125, 93-102. https://doi.org/10.1016/j.molstruc.2016.06.057 DOI: https://doi.org/10.1016/j.molstruc.2016.06.057
Electrochemical and Thermodynamic Evaluation on Corrosion Inhibition of C38 in 1M HCl By the Rumex Ethanolic Extract. (2022). International Journal of Corrosion and Scale Inhibition, 11(1). https://doi.org/10.17675/2305-6894-2022-11-1-23 DOI: https://doi.org/10.17675/2305-6894-2022-11-1-23
Farahani, A., Taghaddos, H., & Shekarchi, M. (2019). Prediction of long-term chloride diffusion in silica fume concrete in a marine environment. Cement and Concrete Composites, 59,
10-17. https://doi.org/10.1016/j.cemconcomp.2015.03.006 DOI: https://doi.org/10.1016/j.cemconcomp.2015.03.006
Feng, L., Zhang, S., Hao, L., Du, H., Pan, R., Huang, G., & Liu, H. (2022). Cucumber (Cucumis sativus L.) Leaf Extract as a Green Corrosion Inhibitor for Carbon Steel in Acidic Solution: Electrochemical, Functional and Molecular Analysis. Molecules, 27(12), 3826. https://doi.org/10.3390/molecules27123826 DOI: https://doi.org/10.3390/molecules27123826
Flores-Nicolás, A., Flores-Nicolás, M., & Uruchurtu-Chavarín, J. (2021). Corrosion effect on reinforced concrete with the addition of graphite powder and its evaluation on physical-electrochemical properties. Revista ALCONPAT, 11(1), 18-33. https://doi.org/10.21041/ra.v11i1.501 DOI: https://doi.org/10.21041/ra.v11i1.501
Fuhaid, A. F. A., & Niaz, A. (2022). Carbonation and Corrosion Problems in Reinforced Concrete Structures. Buildings, 12(5), 586. https://doi.org/10.3390/buildings12050586 DOI: https://doi.org/10.3390/buildings12050586
Garcés Terradillos, P., Climent, M.-Á., Carmona, J., & Sánchez Rojas, M. J. (2021). Alargamiento de la vida útil de estructuras de hormigón armado expuestas a ambientes marinos mediante la aplicación de técnicas electroquímicas. Revista ALCONPAT, 11(1),
48-60. https://doi.org/10.21041/ra.v11i1.518 DOI: https://doi.org/10.21041/ra.v11i1.518
Gaylarde, C. C., & Ortega-Morales, B. O. (2023). Biodeterioration and Chemical Corrosion of Concrete in the Marine Environment: Too Complex for Prediction. Microorganisms, 11(10), 2438.
https://doi.org/10.3390/microorganisms11102438 DOI: https://doi.org/10.3390/microorganisms11102438
Gudainiyan, J., & Kishore, K. (2022). A review on cement concrete strength incorporated with agricultural waste. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.10.179 DOI: https://doi.org/10.1016/j.matpr.2022.10.179
Guo, D., Wang, Y., Zhang, Y., Duan, J., Guan, F., & Hou, B. (2024). Effects of marine eutrophication environment on microbial corrosion: A review. Marine Pollution Bulletin, 205, 116637. https://doi.org/10.1016/j.marpolbul.2024.116637 DOI: https://doi.org/10.1016/j.marpolbul.2024.116637
Hakeem, I. Y., Amin, M., Agwa, I. S., Abd-Elrahman, M. H., & Abdelmagied, M. F. (2023). Using a combination of industrial and agricultural wastes to manufacture sustainable ultra-high-performance concrete. Case Studies in Construction Materials, 19, Artículo e02323. https://doi.org/10.1016/j.cscm.2023.e02323 DOI: https://doi.org/10.1016/j.cscm.2023.e02323
He, J., Kawasaki, S., & Achal, V. (2020). The Utilization of Agricultural Waste as Agro-Cement in Concrete: A Review. Sustainability, 12(17), 6971. https://doi.org/10.3390/su12176971 DOI: https://doi.org/10.3390/su12176971
Hernández-Sánchez, S. E., Flores-De los Rios, J. P., Monreal-Romero, H. A., Flores-Holguin, N. R., Rodríguez-Valdez, L. M., Sánchez-Carrillo, M., Delgado, A. D., & Chacón-Nava, J. G. (2024). Ruta graveolens Plant Extract as a Green Corrosion Inhibitor for 304 SS in 1 M HCl: Experimental and Theoretical Studies. Metals, 14(11), 1267. https://doi.org/10.3390/met14111267 DOI: https://doi.org/10.3390/met14111267
Hijazi, K. M., Abdel-Gaber, A. M., Younes, G. O., & Habchi, R. (2021). Comparative study of the effect of an acidic anion on the mild steel corrosion inhibition using Rhus Coriaria plant extract and its quercetin component. Portugaliae Electrochimica Acta, 39(4),
237-252. https://doi.org/10.4152/pea.2021390402 DOI: https://doi.org/10.4152/pea.2021390402
Hossain, N., Aminul Islam, M., & Asaduzzaman Chowdhury, M. (2023). Advances of Plant-Extracted Inhibitors in Metal Corrosion Reduction – Future Prospects and Challenges. Results in Chemistry, 100883. https://doi.org/10.1016/j.rechem.2023.100883 DOI: https://doi.org/10.1016/j.rechem.2023.100883
Hossain, N., Chowdhury, M. A., Iqbal, A. K. M. P., Islam, M. S., Sheikh Omar, N. Y., & Saifullah, A. Z. A. (2021). Paederia Foetida leaves extract as a green corrosion inhibitor for mild steel in hydrochloric acid solution. Current Research in Green and Sustainable Chemistry, 4, 100191. https://doi.org/10.1016/j.crgsc.2021.100191 DOI: https://doi.org/10.1016/j.crgsc.2021.100191
Holla, B., Mahesh, R., Manjunath, H. R., & Anjanapura, V. R. (2024). Plant Extracts as Green Corrosion Inhibitors for Different Kinds of Steel: A Review. Heliyon, Artículo e33748. https://doi.org/10.1016/j.heliyon.2024.e33748 DOI: https://doi.org/10.1016/j.heliyon.2024.e33748
Hu, J., Zhu, Y., Hang, J., Zhang, Z., Ma, Y., Huang, H., Yu, Q., & Wei, J. (2021). The effect of organic core–shell corrosion inhibitors on corrosion performance of the reinforcement in simulated concrete pore solution. Construction and Building Materials, 267, 121011. https://doi.org/10.1016/j.conbuildmat.2020.121011 DOI: https://doi.org/10.1016/j.conbuildmat.2020.121011
Jauregui, D., Lezama, E., & Vásquez, A. (2023). “Uso del inhibidor de nitrito de calcio y/o uso del acero galvanizado para evitar la corrosión del acero del concreto armado”. LACCEI, 21(1), 8.
https://laccei.org/LACCEI2023-BuenosAires/all-papers/Contribution_475_a.pdf
Karki, R., Bajgai, A. K., Khadka, N., Thapa, O., Mukhiya, T., Oli, H. B., & Bhattarai, D. P. (2022). Acacia catechu Bark Alkaloids as Novel Green Inhibitors for Mild Steel Corrosion in a One Molar Sulphuric Acid Solution. Electrochem, 3(4),
668-687. https://doi.org/10.3390/electrochem3040044 DOI: https://doi.org/10.3390/electrochem3040044
Karki, N., Neupane, S., Kumar Gupta, D., Kumari Das, A., Singh, S., Maiya Koju, G., Choudhary, Y., & Prasad Yadav, A. (2021). Berberine Isolated from Mahonia Nepalensis as an Eco-Friendly and Thermally Stable Corrosion Inhibitor for Mild Steel in Acid Medium. Arabian Journal of Chemistry, 103423. https://doi.org/10.1016/j.arabjc.2021.103423 DOI: https://doi.org/10.1016/j.arabjc.2021.103423
Kaya, F., Solmaz, R., & Geçibesler, İ. H. (2023). Investigation of adsorption, corrosion inhibition, synergistic inhibition effect and stability studies of Rheum ribes leaf extract on mild steel in 1 M HCl solution. Journal of the Taiwan Institute of Chemical Engineers, 143, 104712. https://doi.org/10.1016/j.jtice.2023.104712 DOI: https://doi.org/10.1016/j.jtice.2023.104712
Khalife, E., Sabouri, M., Kaveh, M., & Szymanek, M. (2024). Recent Advances in the Application of Agricultural Waste in Construction. Applied Sciences, 14(6), 2355. https://doi.org/10.3390/app14062355 DOI: https://doi.org/10.3390/app14062355
Kobbekaduwa, D., Nanayakkara, O., Krevaikas, T., & Di Sarno, L. (2024). Effect of organic corrosion inhibitors on the behaviour of repair mortars and reinforcement corrosion. Construction and Building Materials, 451, 138787. https://doi.org/10.1016/j.conbuildmat.2024.138787 DOI: https://doi.org/10.1016/j.conbuildmat.2024.138787
Lima, K. C. d. S. d., Paiva, V. M., Perrone, D., Ripper, B., Simões, G., Rocco, M. L. M., Veiga, A. G. d., & D’Elia, E. (2020). Glycine max meal extracts as corrosion inhibitor for mild steel in sulphuric acid solution. Journal of Materials Research and Technology, 9(6), 12756–12772. https://doi.org/10.1016/j.jmrt.2020.09.019 DOI: https://doi.org/10.1016/j.jmrt.2020.09.019
Liu, C. (2022). Trans-1,4-polyisoprene (TPI)) Extracted from Eucommia bark as Natural Corrosion Inhibitor for Carbon Steel in the Simulated Concrete Pore Solution. International Journal of Electrochemical Science, ArticleID:220615. https://doi.org/10.20964/2022.06.34 DOI: https://doi.org/10.20964/2022.06.34
Liao, B., Ma, S., Zhang, S., Li, X., Quan, R., Wan, S., & Guo, X. (2023). Fructus cannabis protein extract powder as a green and high effective corrosion inhibitor for Q235 carbon steel in 1 M HCl solution. International Journal of Biological Macromolecules, 124358. https://doi.org/10.1016/j.ijbiomac.2023.124358 DOI: https://doi.org/10.1016/j.ijbiomac.2023.124358
Liu, S., Gao, Z., Ding, G., Dong, C., Qu, Z., Yang, H., Song, L., Zhang, F., Wang, L., Sun, D., & Zhang, B. (2025). Comparison of the short-term corrosion behavior and mechanism of 40CrNiMoA steel in the marine atmospheric zone and the splash zone. Materials Today Communications, 42, 111346. https://doi.org/10.1016/j.mtcomm.2024.111346 DOI: https://doi.org/10.1016/j.mtcomm.2024.111346
Li, Q., & Zhang, X. (2024). Effects of Agricultural Trade on Reducing Carbon Emissions under the “Dual Carbon” Target: Evidence from China. Agriculture, 14(8), 1274. https://doi.org/10.3390/agriculture14081274 DOI: https://doi.org/10.3390/agriculture14081274
Madaci, A., Ferkous, H., Sedik, A., Delimi, A., Boulechfar, C., Belakhdar, A., Berredjem, M., Aymen Chaouch, M., Alam, M., Majdoub, H., Jaffrezic-Renault, N., & Benguerba, Y. (2023). Experimental and theoretical study of polysaccharides extracted from prickly pear nopales Pulp (PPUN) of Opuntia ficus-indica as corrosion inhibitors. Journal of Molecular Liquids, 122272. https://doi.org/10.1016/j.molliq.2023.122272 DOI: https://doi.org/10.1016/j.molliq.2023.122272
Marzorati, S., Verotta, L., & Trasatti, S. (2019). Green Corrosion Inhibitors from Natural Sources and Biomass Wastes. Molecules, 24(1), 48. https://doi.org/10.3390/molecules24010048 DOI: https://doi.org/10.3390/molecules24010048
Meng, Y., Li, S., & Zhang, Z. (2024). Inhibition performance of uniconazole on steel corrosion in simulated concrete pore solution: An eco-friendly way for steel protection. Heliyon, 10(3), Artículo e24688. https://doi.org/10.1016/j.heliyon.2024.e24688 DOI: https://doi.org/10.1016/j.heliyon.2024.e24688
Mirsayapov, I., Yakupov, S., & Hassoun, M. (2020). About concrete and reinforced concrete corrosion. IOP Conference Series: Materials Science and Engineering, 890, 012061. https://doi.org/10.1088/1757-899x/890/1/012061 DOI: https://doi.org/10.1088/1757-899X/890/1/012061
Mwakalesi, A., & Nyangi, M. (2020). Effective Corrosion Inhibition of Mild Steel in an Acidic Environment Using an Aqueous Extract of Macadamia Nut Green Peel Biowaste †. MDPI, 31(1), 7. https://doi.org/10.3390/ASEC2022-13804 DOI: https://doi.org/10.3390/ASEC2022-13804
Niu, G., Yuan, R., Wang, E., Yang, X., Liu, Z., Li, Z., Zhang, Z., Gong, N., Li, K., Su, B., Zhang, J., Wu, H., Li, X., & Murr, L. E. (2024). Unraveling the influence of Mo on the corrosion mechanism of Ni-advanced weathering steel in harsh marine atmospheric environments. Journal of Materials Science & Technology, 195(1), 21. https://doi.org/10.1016/j.jmst.2024.02.021 DOI: https://doi.org/10.1016/j.jmst.2024.02.021
Oli, H. B., Thapa Magar, J., Khadka, N., Subedee, A., Bhattarai, D. P., & Pant, B. (2022). Coriaria nepalensis Stem Alkaloid as a Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution. Electrochem, 3(4), 713-727. https://doi.org/10.3390/electrochem3040047 DOI: https://doi.org/10.3390/electrochem3040047
Pan, C., Chen, N., He, J., Liu, S., Chen, K., Wang, P., & Xu, P. (2020). Effects of corrosion inhibitor and functional components on the electrochemical and mechanical properties of concrete subject to chloride environment. Construction and Building Materials, 260, 119724. https://doi.org/10.1016/j.conbuildmat.2020.119724 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119724
Pinto Costa, R., Simas Franchetto, A., Smolinski Gouveia, A. J., Ziegler, F., Queiros Pessoa, K., & Garcez, M. R. (2022). Previsão da vida útil de estruturas de concreto com base em modelos para avanço da frente de carbonatação. Revista ALCONPAT, 12(1). https://doi.org/10.21041/ra.v12i1.558 DOI: https://doi.org/10.21041/ra.v12i1.558
Pustaj, G. (2019). Olive Leaf Extract as a Corrosion Inhibitor of Carbon Steel in CO2-Saturated Chloride–Carbonate Solution. International Journal of Electrochemical Science, 7811-7829. https://doi.org/10.20964/2016.09.25 DOI: https://doi.org/10.20964/2016.09.25
Quispe, C., Lino, D., Rodríguez, J., & Hinostroza, A. (2021). Concrete Cracking Control in Underwater Marine Structures using Basalt Fiber. IOP Conference Series: Materials Science and Engineering, 1054(1), 012008. https://doi.org/10.1088/1757-899x/1054/1/012008 DOI: https://doi.org/10.1088/1757-899X/1054/1/012008
Rocha Sandoval, C. A., & Ocrospoma Callupe, F. N. (2024). Patologías del Concreto en un Canal de Riego. Ciencia Latina Revista Científica Multidisciplinar, 8(4), 9084-9095. https://doi.org/10.37811/cl_rcm.v8i4.13050 DOI: https://doi.org/10.37811/cl_rcm.v8i4.13050
Rucana Guadalupe, E., Delgado Calderón, G. F., Campos Vasquez, N., & Neyra Torres, J. L. (2023). Influence of nanomaterial (Zinc Oxide) on the durability of conventional concrete. In 21st LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI 2023): “Leadership in Education and Innovation in Engineering in the Framework of Global Transformations: Integration and Alliances for Integral Development”. Latin American and Caribbean Consortium of Engineering Institutions. https://doi.org/10.18687/laccei2023.1.1.782 DOI: https://doi.org/10.18687/LACCEI2023.1.1.782
Romero-Sáez, M. (2022). Los residuos agroindustriales, una oportunidad para la economía circular. TecnoLógicas, 25(54), Artículo e2505. https://doi.org/10.22430/22565337.2505 DOI: https://doi.org/10.22430/22565337.2505
Ramananda Singh, M., Gupta, P., & Gupta, K. (2019). The litchi (Litchi Chinensis) peels extract as a potential green inhibitor in prevention of corrosion of mild steel in 0.5 M H2SO4 solution. Arabian Journal of Chemistry, 12(7),
1035-1041. https://doi.org/10.1016/j.arabjc.2015.01.002 DOI: https://doi.org/10.1016/j.arabjc.2015.01.002
Rodríguez-Clemente, E., González-Nava, V. J., Angeles-Beltran, D., Humberto, C. C., Palomar-Pardavé, M., Landeros-Martínez, L. L., Flores-De los Ríos, J. P., & González-Rodríguez, J. G. (2024). Electrochemical and Theoretical evaluation of Dihydro-Benzoimidazoquinazolines as corrosion inhibitors for API X-120 steel in acid medium. Journal of Molecular Structure, 138824. https://doi.org/10.1016/j.molstruc.2024.138824 DOI: https://doi.org/10.1016/j.molstruc.2024.138824
Soares, M., Faria, L., Miranda, T., Pereira, E., Vilarinho, C., & Carvalho, J. (2025). The potential of agri-food waste to solve construction's environmental problems: A review. Cleaner and Circular Bioeconomy, 10, 100138. https://doi.org/10.1016/j.clcb.2025.100138 DOI: https://doi.org/10.1016/j.clcb.2025.100138
Sheng, H., Jiang, X., Li, H., Cui, H., Zhao, Z., Guo, H., & Li, L. (2022). Investigation of 7075 Aluminum Alloy Corrosion in Marine Environment. International Journal of Electrochemical Science, 17(5), 11. https://doi.org/10.20964/2022.05.56 DOI: https://doi.org/10.20964/2022.05.56
Shevtsov, D., Cao, N. L., Nguyen, V. C., Nong, Q. Q., Le, H. Q., Nguyen, D. A., Zartsyn, I., & Kozaderov, O. (2022). Progress in Sensors for Monitoring Reinforcement Corrosion in Reinforced Concrete Structures. A Review. Sensors, 22(9), 3421. https://doi.org/10.3390/s22093421 DOI: https://doi.org/10.3390/s22093421
Sorlini, S., Bigoni, R., Collivignarelli, M. C., & Berbenni, P. (2019). Drinking water quality assessment and corrosion mitigation in the hospital water supply system of Chacas Village (Peru). Ambiente e Agua. An Interdisciplinary Journal of Applied Science, 9(3). https://doi.org/10.4136/ambi-agua.1407 DOI: https://doi.org/10.4136/ambi-agua.1407
Shang, Z., & Zhu, J. (2021). Overview on plant extracts as green corrosion inhibitors in the oil and gas fields. Journal of Materials Research and Technology, 15,
5078-5094. https://doi.org/10.1016/j.jmrt.2021.10.095 DOI: https://doi.org/10.1016/j.jmrt.2021.10.095
Shehnazdeep & Pradhan, B. (2022). A study on effectiveness of inorganic and organic corrosion inhibitors on rebar corrosion in concrete: A review. Materials Today: Proceedings, 65, 7. https://doi.org/10.1016/j.matpr.2022.04.296 DOI: https://doi.org/10.1016/j.matpr.2022.04.296
Teymouri, F., Allahkaram, S. R., Shekarchi, M., Azamian, I., & Johari, M. (2021). A comprehensive study on the inhibition behaviour of four carboxylate-based corrosion inhibitors focusing on efficiency drop after the optimum concentration for carbon steel in the simulated concrete pore solution. Construction and Building Materials, 296, 123702. https://doi.org/10.1016/j.conbuildmat.2021.123702 DOI: https://doi.org/10.1016/j.conbuildmat.2021.123702
Tian, H., Cui, Z., Ma, H., Zhao, P., Yan, M., Wang, X., & Cui, H. (2022). Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones. Corrosion Science, 206, 19. https://doi.org/10.1016/j.corsci.2022.110490 DOI: https://doi.org/10.1016/j.corsci.2022.110490
Tian, Y., Bao, J., Xie, D., Wang, B., Zhang, P., Zhao, T., & Lei, D. (2023). The effects of organic corrosion inhibitor on concrete properties and frost resistance. Journal of Building Engineering, 65, 105762. https://doi.org/10.1016/j.jobe.2022.105762 DOI: https://doi.org/10.1016/j.jobe.2022.105762
Tian, Y., Guo, W., Wang, W., Wang, B., Zhang, P., & Zhao, T. (2023). Influence of organic corrosion inhibitors on steel corrosion in concrete under the coupled action of freeze–thaw cycles and chloride attack. Construction and Building Materials, 368, 130385. https://doi.org/10.1016/j.conbuildmat.2023.130385 DOI: https://doi.org/10.1016/j.conbuildmat.2023.130385
Wang, X., Liu, J., Jin, M., Yan, Y., Tang, J., & Jin, Z. (2024). A review of organic corrosion inhibitors for resistance under chloride attacks in reinforced concrete: Background, Mechanisms and Evaluation methods. Construction and Building Materials, 433, 136583. https://doi.org/10.1016/j.conbuildmat.2024.136583 DOI: https://doi.org/10.1016/j.conbuildmat.2024.136583
Wang, Y., Qiang, Y., Zhi, H., Ran, B., & Zhang, D. (2022). Evaluating the synergistic effect of maple leaves extract and iodide ions on corrosion inhibition of Q235 steel in H2SO4 solution. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2022.10.030 DOI: https://doi.org/10.1016/j.jiec.2022.10.030
Wang, Q., Wu, X., Zheng, H., Liu, L., Zhang, Q., Zhang, A., Yan, Z., Sun, Y., Li, Z., & Li, X. (2022). Evaluation for Fatsia japonica leaves extract (FJLE) as green corrosion inhibitor for carbon steel in simulated concrete pore solutions. Journal of Building Engineering, 105568. https://doi.org/10.1016/j.jobe.2022.105568 DOI: https://doi.org/10.1016/j.jobe.2022.105568
Xu, Z., Wu, Y., Zhang, Z., Wang, Y., Hu, J., Ma, Y., Zhang, Z., Huang, H., Wei, J., Yu, Q., & Shi, C. (2023). A review on the research progress of LDHs as corrosion inhibitors for reinforced concrete. Journal of Building Engineering, 70, 106303. https://doi.org/10.1016/j.jobe.2023.106303 DOI: https://doi.org/10.1016/j.jobe.2023.106303
Yong, X., Lee, S., & Cho, H. (2021). Penetration properties and injecting conditions of corrosion inhibitor for concrete. Construction and Building Materials, 284, 9. https://doi.org/10.1016/j.conbuildmat.2021.122761 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122761
Zakeri, A., Bahmani, E., & Aghdam, A. S. R. (2022). Plant extracts as sustainable and green corrosion inhibitors for protection of ferrous metals in corrosive media: A mini review. Corrosion Communications. https://doi.org/10.1016/j.corcom.2022.03.002 DOI: https://doi.org/10.1016/j.corcom.2022.03.002
Zhao, W., Li, F., Lv, X., Chang, J., Shen, S., Dai, P., Xia, Y., & Cao, Z. (2023). Research Progress of Organic Corrosion Inhibitors in Metal Corrosion Protection. Crystals, 13(9), 1329. https://doi.org/10.3390/cryst13091329 DOI: https://doi.org/10.3390/cryst13091329
Zhao, T., Zhou, L., Li, Z., Wang, Z., & Shang, B. (2025). Diphenyl disulfide derivatives as high-efficiency corrosion inhibitors for copper in sulfuric acid: Experimental and theoretical studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 705, 135751. https://doi.org/10.1016/j.colsurfa.2024.135751 DOI: https://doi.org/10.1016/j.colsurfa.2024.135751
Zhou, Z., Min, X., Wan, S., Liu, J., Liao, B., & Guo, X. (2023). A novel green corrosion inhibitor extracted from waste feverfew root for carbon steel in H2SO4 solution. Results in Engineering, 17, 100971. https://doi.org/10.1016/j.rineng.2023.100971 DOI: https://doi.org/10.1016/j.rineng.2023.100971
Zhu, P., & Liu, M. (2023). Non-uniform Corrosion Mechanism and Residual Life Forecast of Marine Engineering Concrete Reinforcement. Journal of Engineering Research, 11(2), 7. https://doi.org/10.1016/j.jer.2023.100053 DOI: https://doi.org/10.1016/j.jer.2023.100053
Zomorodian, A., & Behnood, A. (2023). Review of Corrosion Inhibitors in Reinforced Concrete: Conventional and Green Materials. Buildings, 13(5), 1170. https://doi.org/10.3390/buildings13051170 DOI: https://doi.org/10.3390/buildings13051170
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Aldair Enrique Sandoval Tamariz, Fiorela Yselina Perez Pereda

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
