Adaptación tecnológica de los estudiantes a docentes de educación inicial: un modelo de ecuaciones estructurales
DOI:
https://doi.org/10.31637/epsir-2025-2021Palabras clave:
adaptación tecnológica, formación tecnológica, competencias digitales, actitud hacia la tecnología, docentes de educación inicial, ecuaciones estructurales, estudiantesResumen
Introducción: Este estudio analizó los factores que influyen en la adaptación tecnológica de estudiantes y docentes de educación inicial, mediante un modelo de ecuaciones estructurales. Metodología: Se utilizó un enfoque cuantitativo, con un diseño no experimental, transversal y correlacional, aplicando un cuestionario validado a 546 estudiantes de seis universidades de Ecuador. Resultados: La Formación Tecnológica (β = 0.375) y el Apoyo Institucional (β = 0.305) influyen significativamente en las Actitudes hacia la Tecnología, que afectan directamente las Competencias Digitales (β = 0.508) y los Resultados de Aprendizaje (β = 0.556). Conclusiones: El estudio subraya la importancia de fortalecer programas de formación tecnológica e institucional para integrar eficazmente las TIC en la educación inicial.
Descargas
Citas
Akabayashi, H., Taguchi, S. y Zvedelikova, M. (2024). School ICT resources, teachers, and online education: Evidence from school closures in Japan during the COVID-19 pandemic. Education Economics, 1-14. https://doi.org/10.1080/09645292.2024.2362917 DOI: https://doi.org/10.1080/09645292.2024.2362917
Akai, J., Osei, R., Adjei, R. y Adiza, P. (2024). Analyzing the challenges basic school teachers face in integrating Information and Communication Technology into teaching and learning activities in a developing country. Cogent Education, 11(1), 2364544. https://doi.org/10.1080/2331186X.2024.2364544 DOI: https://doi.org/10.1080/2331186X.2024.2364544
Berşe, S., Akça, K., Dirgar, E. y Kaplan Serin, E. (2024). The role and potential contributions of the Artificial Intelligence Language Model ChatGPT. Annals of Biomedical Engineering, 52(2), 130-133. https://doi.org/10.1007/s10439-023-03296-w DOI: https://doi.org/10.1007/s10439-023-03296-w
Bower, M., Torrington, J., Lai, J. W. M., Petocz, P. y Alfano, M. (2024). How should we change teaching and assessment in response to increasingly powerful generative Artificial Intelligence? Outcomes of the ChatGPT teacher survey. Education and Information Technologies. https://doi.org/10.1007/s10639-023-12405-0 DOI: https://doi.org/10.1007/s10639-023-12405-0
Bravo, H. M. T., Zambrano, C. K. M., Merchán, V. V. M. y Franco, A. M. (2024). Educación inclusiva, las tic, tendencias y perspectivas en Ecuador. Conocimiento Global, 9(1), 142-151. https://doi.org/10.70165/cglobal.v9i1.352 DOI: https://doi.org/10.70165/cglobal.v9i1.352
Bukar, U. A., Sayeed, Md. S., Fatimah Abdul Razak, S., Yogarayan, S. y Sneesl, R. (2024). Decision-Making Framework for the Utilization of Generative Artificial Intelligence in Education: A Case Study of ChatGPT. IEEE Access, 12, 95368-95389. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3425172 DOI: https://doi.org/10.1109/ACCESS.2024.3425172
Cabellos, B., Siddiq, F. y Scherer, R. (2024). The moderating role of school facilitating conditions and attitudes towards ICT on teachers’ ICT use and emphasis on developing students’ digital skills. Computers in Human Behavior, 150, 107994. https://doi.org/10.1016/j.chb.2023.107994 DOI: https://doi.org/10.1016/j.chb.2023.107994
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. L. Erlbaum Associates.
Dai, Z., Xiong, J., Zhao, L. y He, X. (2022). The effectiveness of ICT-enhanced teaching mode using activity theory on raising class interaction and satisfaction in an engineering course. Interactive Learning Environments, 1-20. https://doi.org/10.1080/10494820.2022.2086574 DOI: https://doi.org/10.1080/10494820.2022.2086574
España, R. M., Muñoz, A., Cantabella, M. y Ayuso, B. (2024). Diseño de acciones formativas para mejorar las competencias digitales del profesorado. Revista Electrónica Interuniversitaria de Formación del Profesorado, 27(1), Article 1. https://doi.org/10.6018/reifop.575071 DOI: https://doi.org/10.6018/reifop.575071
García Ruiz, M. R., Buenestado Fernández, M. y Ramírez Montoya, M. S. (2023). Evaluación de la competencia digital docente: Instrumentos, resultados y propuestas. Revisión sistemática de la literatura. Educación XXI : Revista de la Facultad de Educación. https://doi.org/10.5944/educxx1.33520 DOI: https://doi.org/10.5944/educxx1.33520
Hakimi, M., Shahidzay, A. K., Fazi, A. W. y Qarizada, A. (2024). Empirical Assessment of ICT Impact on Teaching and Learning in High Schools: A Study in the Context of Balkh, Afghanistan. EIKI Journal of Effective Teaching Methods, 2(1). https://journals.eikipub.com/index.php/jetm/article/view/96 DOI: https://doi.org/10.59652/jetm.v2i1.96
Hong, J., Liu, W. y Zhang, Q. (2024). Closing the digital divide: The impact of teachers’ ICT use on student achievement in China. Journal of Comparative Economics, 52(3), 697-713. https://doi.org/10.1016/j.jce.2024.06.003 DOI: https://doi.org/10.1016/j.jce.2024.06.003
König, J., Heine, S., Jäger-Biela, D. y Rothland, M. (2024). ICT integration in teachers’ lesson plans: A scoping review of empirical studies. European Journal of Teacher Education, 47(4), 821-849. https://doi.org/10.1080/02619768.2022.2138323 DOI: https://doi.org/10.1080/02619768.2022.2138323
Maitlo, S. K., Shah, S. A. A. y Ahmed, A. (2024). Use of Information and Communication Technology (ICT). En Teaching English as a Second Language (ESL). Journal of Arts and Linguistics Studies, 2(1), 27-51. https://jals.miard.org/index.php/jals/article/view/84
Ngodu, A., Ndibalema, P. M. y William, F. (2024). Context-relevant strategies for ICT integration in teaching and learning science subjects in Tanzania secondary schools. Educational Technology Quarterly, 1, 20-37. https://doi.org/10.55056/etq.704 DOI: https://doi.org/10.55056/etq.704
Salifu, I., Arthur, F., Arkorful, V., Abam Nortey, S. y Solomon Osei-Yaw, R. (2024). Economics students’ behavioural intention and usage of ChatGPT in higher education: A hybrid structural equation modelling-artificial neural network approach. Cogent Social Sciences, 10(1), 2300177. https://doi.org/10.1080/23311886.2023.2300177 DOI: https://doi.org/10.1080/23311886.2023.2300177
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Dayron Rumbaut Rangel, Ana Jacqueline Noblecilla Olaya, Fabrizzio Jacinto Andrade Zamora

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).