Artificial intelligence in project management: case of construction and civil works

Authors

DOI:

https://doi.org/10.31637/epsir-2024-1615

Keywords:

project management, artificial intelligence, construction sector, civil works, value chain, systematic review, cost management, time management

Abstract

Introduction: This paper relates a research with the objective of establishing the levels of appropriation of emerging technologies, mainly artificial intelligence, in project management in the construction sector. Methodology: Quantitative research was carried out focused on a review of international literature and the determination of the level of technological maturity in project management in the sector in Colombia. A total of 97 companies participated.  Results: The results show a high interest of the productive sector and the academic community in the use of artificial intelligence in project management, prioritizing areas such as costs, quality, time, scope and risks. The incorporation of software with AI, LLM (Large Language Models) and big data processing are prioritized. Discussion: The results are consistent with a topic of increasing interest in the academic community. The concepts are being widely developed internationally and consolidation is projected in Colombia. Conclusions: The construction sector in Colombia has an important path in the incorporation of emerging technologies (artificial intelligence), however there is interest and willingness to do so and apply them in their different project life cycles.

Downloads

Download data is not yet available.

Author Biographies

María Alejandra Jaimes-Quintanilla, Corporación Universitaria Minuto de Dios

Industrial Engineer from Universidad Santo Tomás (2013), Master in Quality and Integral Management (2014) from Universidad Santo Tomás. She has 10 years of experience in university teaching and research. She has participated as a director in academic organizations and in the real estate sector. She has experience in production and industrial processes in the poultry sector. She is part of the research group of the Industrial Engineering program of the Corporación Universitaria Minuto de Dios. Her main research interests are project management, artificial intelligence, educational technology and applied telecommunications.

Sergio Zabala-Vargas , Corporación Universitaria Minuto de Dios

Electronic Engineer from the Industrial University of Santander (2005), specialist in Project Management from the University of Tolima (2010), Master in Project Management from the UCI of Costa Rica (2014) and Master in E-learning from the Autonomous University of Bucaramanga (2015). D. in Educational Technology from the University of the Balearic Islands, Spain (2022). He has 18 years of experience in university teaching and research. He is a researcher SENIOR category of MINCIENCIAS (Colombia). He is part of the research group GICABS of the Corporación Universitaria Minuto de Dios. His main research interests are project management, artificial intelligence, educational technology and applied telecommunications.

References

Akbari, S., Khanzadi, M. y Gholamian, M. R. (2018). Building a rough sets-based prediction model for classifying large-scale construction projects based on sustainable success index. Engineering, Construction and Architectural Management, 25(4), 534-558. https://doi.org/10.1108/ECAM-05-2016-0110 DOI: https://doi.org/10.1108/ECAM-05-2016-0110

Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., Akinade, O. O. y Ahmed, A. A. (2020). Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 32, 1-14. https://doi.org/10.1016/j.jobe.2020.101827 DOI: https://doi.org/10.1016/j.jobe.2020.101827

Amer, F., Jung, Y. y Golparvar-Fard, M. (2021). Transformer machine learning language model for auto-alignment of long-term and short-term plans in construction. Automation in Construction, 132, 103929. https://doi.org/10.1016/j.autcon.2021.103929 DOI: https://doi.org/10.1016/j.autcon.2021.103929

Arashpour, M., Heidarpour, A., Akbar Nezhad, A., Hosseinifard, Z., Chileshe, N. y Hosseini, R. (2020). Performance-based control of variability and tolerance in off-site manufacture and assembly: Optimization of penalty on poor production quality. Construction Management and Economics, 38(6), 502-514. https://doi.org/10.1080/01446193.2019.1616789 DOI: https://doi.org/10.1080/01446193.2019.1616789

Bilal, S. M., Bernardos, C. J. y Guerrero, C. (2013). Position-based routing in vehicular networks: A survey. Journal of Network and Computer Applications, 36(2), 685-697. https://doi.org/10.1016/j.jnca.2012.12.023 DOI: https://doi.org/10.1016/j.jnca.2012.12.023

Boden, M. A. (2017). Inteligencia artificial. Turner.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G. y Askell, A. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.

Cao, Y. y Ashuri, B. (2020). Predicting the Volatility of Highway Construction Cost Index Using Long Short-Term Memory. Journal of Management in Engineering, 36(4), 04020020. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000784 DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000784

Chang, W. y Grady, N. (2019, octubre 21). NIST Big Data Interoperability Framework: Volume 1, Definitions. Special Publication (NIST SP). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.1500-1r2 DOI: https://doi.org/10.6028/NIST.SP.1500-1r2

Cheng, M.-Y., Cao, M.-T. y Herianto, J. G. (2020). Symbiotic organisms search-optimized deep learning technique for mapping construction cash flow considering complexity of project. Chaos, Solitons & Fractals, 138, 1-12. https://doi.org/10.1016/j.chaos.2020.109869 DOI: https://doi.org/10.1016/j.chaos.2020.109869

Cheng, M.-Y. y Hoang, N.-D. (2018). Estimating construction duration of diaphragm wall using firefly-tuned least squares support vector machine. Neural Computing and Applications, 30(8), 2489-2497. https://doi.org/10.1007/s00521-017-2840-z DOI: https://doi.org/10.1007/s00521-017-2840-z

Chenya, L., Aminudin, E., Mohd, S. y Yap, L. S. (2022). Intelligent Risk Management in Construction Projects: Systematic Literature Review. IEEE Access, 10, 72936-72954. https://doi.org/10.1109/ACCESS.2022.3189157 DOI: https://doi.org/10.1109/ACCESS.2022.3189157

Cooke, B. y Williams, P. (2013). Construction planning, programming and control. John Wiley & Sons.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V. y Salakhutdinov, R. (2019). Transformer-xl: Attentive language models beyond a fixed-length context. arXiv:1901.02860. https://doi.org/10.48550/arXiv.1901.02860 DOI: https://doi.org/10.18653/v1/P19-1285

Darko, A., Chan, A. P. C., Adabre, M. A., Edwards, D. J., Hosseini, M. R., & Ameyaw, E. E. (2020). Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities. Automation in Construction, 112, 1-19. https://doi.org/10.1016/j.autcon.2020.103081 DOI: https://doi.org/10.1016/j.autcon.2020.103081

Departamento Administrativo Nacional de Estadística - DANE. (2022). Indicadores Económicos Alrededor de la Construcción (IEAC). https://acortar.link/DULWbp

Edayadiyil, J. B. y Greeshma, A. S. (2022). Automated progress monitoring of construction projects using Machine learning and image processing approach. International Conference on Advances in Construction Materials and Structures, 65, 554-563. https://doi.org/10.1016/j.matpr.2022.03.137 DOI: https://doi.org/10.1016/j.matpr.2022.03.137

Emaminejad, N. y Akhavian, R. (2022). Trustworthy AI and robotics: Implications for the AEC industry. Automation in Construction, 139, 104298. https://doi.org/10.1016/j.autcon.2022.104298 DOI: https://doi.org/10.1016/j.autcon.2022.104298

Fang, L., Mei, B., Jiang, L. y Sun, J. (2020). Investigation of intelligent safety management information system for nuclear power construction projects. ACM International Conference Proceeding Series, 607-611. https://doi.org/10.1145/3452940.3453058 DOI: https://doi.org/10.1145/3452940.3453058

Gobierno Nacional de Colombia. (2020). Estrategia Nacional BIM 2020-2026. https://acortar.link/eVlDM7

Gupta, D. y Rani, R. (2019). A study of big data evolution and research challenges. Journal of Information Science, 45(3), 322-340. https://doi.org/10.1177/0165551518789880 DOI: https://doi.org/10.1177/0165551518789880

Haider, M. (2015). Getting started with data science: Making sense of data with analytics. IBM Press.

Hsu, H.-C., Chang, S., Chen, C.-C. y Wu, I.-C. (2020). Knowledge-based system for resolving design clashes in building information models. Automation in Construction, 110, 1-14. https://doi.org/10.1016/j.autcon.2019.103001 DOI: https://doi.org/10.1016/j.autcon.2019.103001

Huang, Y., Shi, Q., Zuo, J., Pena-Mora, F. y Chen, J. (2021). Research status and challenges of data-driven construction project management in the big data context. Advances in Civil Engineering, 1-19. DOI: https://doi.org/10.1155/2021/6674980

Interreg - North Sea Region - European Regional Development Fund. (2021). Industry 4.0 Awareness/Readiness tool. https://acortar.link/RpJ8LU

Kanyilmaz, A., Tichell, P. R. N. y Loiacono, D. (2022). A genetic algorithm tool for conceptual structural design with cost and embodied carbon optimization. Engineering Applications of Artificial Intelligence, 112, 104711. https://doi.org/10.1016/j.engappai.2022.104711 DOI: https://doi.org/10.1016/j.engappai.2022.104711

Kelleher, J. D. y Tierney, B. (2018). Data science. MIT Press. DOI: https://doi.org/10.7551/mitpress/11140.001.0001

Lledó, P. (2013). Administración de proyectos: El ABC para un Director de proyectos exitoso.

Lester, A. (2013). Project Management, Planning and Control: Managing Engineering, Construction and Manufacturing Projects to PMI, APM and BSI Standards. Elsevier Science.

Li, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z. y Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263, 1-17. https://doi.org/10.1016/j.jclepro.2020.121458 DOI: https://doi.org/10.1016/j.jclepro.2020.121458

Li, W., Duan, P. y Su, J. (2021). The effectiveness of project management construction with data mining and blockchain consensus. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02668-7 DOI: https://doi.org/10.1007/s12652-020-02668-7

Loyola, M. (2018). Big data in building design: A review. J. Inf. Technol. Constr., 23, 259-284.

Rita Mulcahy, P. (2009). PMP exam prep. RMC publications.

Netscher, P. (2014). Successful Construction Project Management: The Practical Guide. Panet Publications.

Oliveira, B., A. P. De Faria Neto, R. M. A. Fernandino, R. F. Carvalho, A. L. Fernandes y F. G. Guimarães. (2021). Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning. IEEE Access, 9, 19195-19207. https://doi.org/10.1109/ACCESS.2021.3054468 DOI: https://doi.org/10.1109/ACCESS.2021.3054468

Pan, M., Yang, Y., Zheng, Z. y Pan, W. (2022). Artificial Intelligence and Robotics for Prefabricated and Modular Construction: A Systematic Literature Review. Journal of Construction Engineering and Management, 148(9), 03122004. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002324 DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0002324

Pospieszny, P., Czarnacka-Chrobot, B. y Kobylinski, A. (2018). An effective approach for software project effort and duration estimation with machine learning algorithms. Journal of Systems and Software, 137, 184-196. https://doi.org/10.1016/j.jss.2017.11.066 DOI: https://doi.org/10.1016/j.jss.2017.11.066

Project Management Institute. (2017). Guía de los Fundamentos Para la Dirección de Proyectos. Pmbok.

Ronghui, S. y Liangrong, N. (2022). An intelligent fuzzy-based hybrid metaheuristic algorithm for analysis the strength, energy and cost optimization of building material in construction management. Engineering with Computers, 38(4), 2663-2680. https://doi.org/10.1007/s00366-021-01420-9 DOI: https://doi.org/10.1007/s00366-021-01420-9

Rouhiainen, L. (2018). Inteligencia artificial. Alienta Editorial.

Russell, S. J. (2010). Artificial intelligence a modern approach. Pearson.

Sacks, R., Brilakis, I., Pikas, E., Xie, H. S. y Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering, 1, e14. https://doi.org/10.1017/dce.2020.16 DOI: https://doi.org/10.1017/dce.2020.16

Saka, A. B., Oyedele, L. O., Akanbi, L. A., Ganiyu, S. A., Chan, D. W. M. y Bello, S. A. (2023). Conversational artificial intelligence in the AEC industry: A review of present status, challenges and opportunities. Advanced Engineering Informatics, 55, 101869. https://doi.org/10.1016/j.aei.2022.101869 DOI: https://doi.org/10.1016/j.aei.2022.101869

Salem, T. y Dragomir, M. (2022). Options for and Challenges of Employing Digital Twins in Construction Management. Applied Sciences, 12, 2928. https://doi.org/10.3390/app12062928 DOI: https://doi.org/10.3390/app12062928

Secretaría General de Industria y de la pyme. (2022). Herramienta de Autodiagnóstico Digital Avanzada (HADA). https://acortar.link/2vPWv7

Wu, L. y AbouRizk, S. (2021). Towards construction’s digital future: A roadmap for enhancing data value. In Canadian Society of Civil Engineering Annual Conference, 225-238. Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-19-1029-6_17

Zabala-Vargas, S., Jaimes-Quintanilla, M. y Jimenez-Barrera, M. H. (2023). Big Data, Data Science, and Artificial Intelligence for Project Management in the Architecture, Engineering, and Construction Industry: A Systematic Review. Buildings, 13(12), 29-44. DOI: https://doi.org/10.3390/buildings13122944

Zabala-Vargas, S., Jiménez-Barrera, M., Vargas-Sanchez, L. y Jaimes-Quintanilla, M. (2023). Big data in construction project management: The Colombian northeast case. Life-Cycle of Structures and Infrastructure Systems, 1, 3476-3483. https://doi.org/0.1201/9781003323020 DOI: https://doi.org/10.1201/9781003323020-425

Zandi, Y., Issakhov, A., Roco Videla, Á., Wakil, K., Wang, Q., Cao, Y., Selmi, A., Agdas, A. S., Fu, L. y Qian, X. (2021). A review study of application of artificial intelligence in construction management and composite beams. Journal of Building Engineering, 44, 103299. DOI: https://doi.org/10.1016/j.jobe.2021.103299

Zhang, Y., Ren, S., Liu, Y., Sakao, T. y Huisingh, D. (2017). A framework for Big Data driven product lifecycle management. Journal of Cleaner Production, 159, 229-240. DOI: https://doi.org/10.1016/j.jclepro.2017.04.172

Zhou, Y., Hu, Z.-Z. y Zhang, W.-Z. (2018). Development and Application of an Industry Foundation Classes-Based Metro Protection Information Model. Mathematical Problems in Engineering, 1-20. https://doi.org/10.1155/2018/1820631 DOI: https://doi.org/10.1155/2018/1820631

Published

2024-10-16

How to Cite

Jaimes-Quintanilla, M. A., & Zabala-Vargas , S. (2024). Artificial intelligence in project management: case of construction and civil works . European Public & Social Innovation Review, 9, 1–21. https://doi.org/10.31637/epsir-2024-1615

Issue

Section

INNOVATING IN THE GALAXY OF ARTIFICIAL INTELLIGENCE