Inteligencia artificial en la gestión de proyectos: caso construcción y obra civil
DOI:
https://doi.org/10.31637/epsir-2024-1615Palabras clave:
gestión de proyectos, inteligencia artificial, sector construcción, obras civiles, cadena de valor, revisión sistemática, gestión de costos, gestión de tiemposResumen
Introducción: El presente documento relaciona una investigación con el objetivo establecer los niveles de apropiación de tecnologías emergentes, principalmente inteligencia artificial, en la gestión de proyectos del sector de la construcción. Metodología: Se llevó a cabo una investigación cuantitativa centrada en una revisión de literatura internacional y la determinación del nivel de madurez tecnológica en la gestión de proyectos en el sector en Colombia. Se contó con la participación de 97 empresas. Resultados: Los resultados muestran alto interés del sector productivo y de la comunidad académica en el uso de inteligencia artificial en la gestión de proyectos, priorizando áreas como costos, calidad, tiempos, alcance y riesgos. La incorporación de software con IA, LLM (Large Language Models) y procesamiento de grandes datos son priorizados. Discusión: Los resultados son consecuentes con una temática de interés incremental en la comunidad académica. Se viene desarrollando ampliamente los conceptos a nivel internacional y se proyecta consolidación en Colombia. Conclusiones: El sector de la construcción Colombia tiene un importante camino en la incorporación de tecnologías emergentes (Inteligencia artificial), sin embargo, existe el interés y disposición para realizarlo y aplicarlos en sus diferentes ciclos de vida de proyecto.
Descargas
Citas
Akbari, S., Khanzadi, M. y Gholamian, M. R. (2018). Building a rough sets-based prediction model for classifying large-scale construction projects based on sustainable success index. Engineering, Construction and Architectural Management, 25(4), 534-558. https://doi.org/10.1108/ECAM-05-2016-0110 DOI: https://doi.org/10.1108/ECAM-05-2016-0110
Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., Akinade, O. O. y Ahmed, A. A. (2020). Deep learning in the construction industry: A review of present status and future innovations. Journal of Building Engineering, 32, 1-14. https://doi.org/10.1016/j.jobe.2020.101827 DOI: https://doi.org/10.1016/j.jobe.2020.101827
Amer, F., Jung, Y. y Golparvar-Fard, M. (2021). Transformer machine learning language model for auto-alignment of long-term and short-term plans in construction. Automation in Construction, 132, 103929. https://doi.org/10.1016/j.autcon.2021.103929 DOI: https://doi.org/10.1016/j.autcon.2021.103929
Arashpour, M., Heidarpour, A., Akbar Nezhad, A., Hosseinifard, Z., Chileshe, N. y Hosseini, R. (2020). Performance-based control of variability and tolerance in off-site manufacture and assembly: Optimization of penalty on poor production quality. Construction Management and Economics, 38(6), 502-514. https://doi.org/10.1080/01446193.2019.1616789 DOI: https://doi.org/10.1080/01446193.2019.1616789
Bilal, S. M., Bernardos, C. J. y Guerrero, C. (2013). Position-based routing in vehicular networks: A survey. Journal of Network and Computer Applications, 36(2), 685-697. https://doi.org/10.1016/j.jnca.2012.12.023 DOI: https://doi.org/10.1016/j.jnca.2012.12.023
Boden, M. A. (2017). Inteligencia artificial. Turner.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G. y Askell, A. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
Cao, Y. y Ashuri, B. (2020). Predicting the Volatility of Highway Construction Cost Index Using Long Short-Term Memory. Journal of Management in Engineering, 36(4), 04020020. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000784 DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000784
Chang, W. y Grady, N. (2019, octubre 21). NIST Big Data Interoperability Framework: Volume 1, Definitions. Special Publication (NIST SP). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.1500-1r2 DOI: https://doi.org/10.6028/NIST.SP.1500-1r2
Cheng, M.-Y., Cao, M.-T. y Herianto, J. G. (2020). Symbiotic organisms search-optimized deep learning technique for mapping construction cash flow considering complexity of project. Chaos, Solitons & Fractals, 138, 1-12. https://doi.org/10.1016/j.chaos.2020.109869 DOI: https://doi.org/10.1016/j.chaos.2020.109869
Cheng, M.-Y. y Hoang, N.-D. (2018). Estimating construction duration of diaphragm wall using firefly-tuned least squares support vector machine. Neural Computing and Applications, 30(8), 2489-2497. https://doi.org/10.1007/s00521-017-2840-z DOI: https://doi.org/10.1007/s00521-017-2840-z
Chenya, L., Aminudin, E., Mohd, S. y Yap, L. S. (2022). Intelligent Risk Management in Construction Projects: Systematic Literature Review. IEEE Access, 10, 72936-72954. https://doi.org/10.1109/ACCESS.2022.3189157 DOI: https://doi.org/10.1109/ACCESS.2022.3189157
Cooke, B. y Williams, P. (2013). Construction planning, programming and control. John Wiley & Sons.
Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V. y Salakhutdinov, R. (2019). Transformer-xl: Attentive language models beyond a fixed-length context. arXiv:1901.02860. https://doi.org/10.48550/arXiv.1901.02860 DOI: https://doi.org/10.18653/v1/P19-1285
Darko, A., Chan, A. P. C., Adabre, M. A., Edwards, D. J., Hosseini, M. R., & Ameyaw, E. E. (2020). Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities. Automation in Construction, 112, 1-19. https://doi.org/10.1016/j.autcon.2020.103081 DOI: https://doi.org/10.1016/j.autcon.2020.103081
Departamento Administrativo Nacional de Estadística - DANE. (2022). Indicadores Económicos Alrededor de la Construcción (IEAC). https://acortar.link/DULWbp
Edayadiyil, J. B. y Greeshma, A. S. (2022). Automated progress monitoring of construction projects using Machine learning and image processing approach. International Conference on Advances in Construction Materials and Structures, 65, 554-563. https://doi.org/10.1016/j.matpr.2022.03.137 DOI: https://doi.org/10.1016/j.matpr.2022.03.137
Emaminejad, N. y Akhavian, R. (2022). Trustworthy AI and robotics: Implications for the AEC industry. Automation in Construction, 139, 104298. https://doi.org/10.1016/j.autcon.2022.104298 DOI: https://doi.org/10.1016/j.autcon.2022.104298
Fang, L., Mei, B., Jiang, L. y Sun, J. (2020). Investigation of intelligent safety management information system for nuclear power construction projects. ACM International Conference Proceeding Series, 607-611. https://doi.org/10.1145/3452940.3453058 DOI: https://doi.org/10.1145/3452940.3453058
Gobierno Nacional de Colombia. (2020). Estrategia Nacional BIM 2020-2026. https://acortar.link/eVlDM7
Gupta, D. y Rani, R. (2019). A study of big data evolution and research challenges. Journal of Information Science, 45(3), 322-340. https://doi.org/10.1177/0165551518789880 DOI: https://doi.org/10.1177/0165551518789880
Haider, M. (2015). Getting started with data science: Making sense of data with analytics. IBM Press.
Hsu, H.-C., Chang, S., Chen, C.-C. y Wu, I.-C. (2020). Knowledge-based system for resolving design clashes in building information models. Automation in Construction, 110, 1-14. https://doi.org/10.1016/j.autcon.2019.103001 DOI: https://doi.org/10.1016/j.autcon.2019.103001
Huang, Y., Shi, Q., Zuo, J., Pena-Mora, F. y Chen, J. (2021). Research status and challenges of data-driven construction project management in the big data context. Advances in Civil Engineering, 1-19. DOI: https://doi.org/10.1155/2021/6674980
Interreg - North Sea Region - European Regional Development Fund. (2021). Industry 4.0 Awareness/Readiness tool. https://acortar.link/RpJ8LU
Kanyilmaz, A., Tichell, P. R. N. y Loiacono, D. (2022). A genetic algorithm tool for conceptual structural design with cost and embodied carbon optimization. Engineering Applications of Artificial Intelligence, 112, 104711. https://doi.org/10.1016/j.engappai.2022.104711 DOI: https://doi.org/10.1016/j.engappai.2022.104711
Kelleher, J. D. y Tierney, B. (2018). Data science. MIT Press. DOI: https://doi.org/10.7551/mitpress/11140.001.0001
Lledó, P. (2013). Administración de proyectos: El ABC para un Director de proyectos exitoso.
Lester, A. (2013). Project Management, Planning and Control: Managing Engineering, Construction and Manufacturing Projects to PMI, APM and BSI Standards. Elsevier Science.
Li, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z. y Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263, 1-17. https://doi.org/10.1016/j.jclepro.2020.121458 DOI: https://doi.org/10.1016/j.jclepro.2020.121458
Li, W., Duan, P. y Su, J. (2021). The effectiveness of project management construction with data mining and blockchain consensus. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02668-7 DOI: https://doi.org/10.1007/s12652-020-02668-7
Loyola, M. (2018). Big data in building design: A review. J. Inf. Technol. Constr., 23, 259-284.
Rita Mulcahy, P. (2009). PMP exam prep. RMC publications.
Netscher, P. (2014). Successful Construction Project Management: The Practical Guide. Panet Publications.
Oliveira, B., A. P. De Faria Neto, R. M. A. Fernandino, R. F. Carvalho, A. L. Fernandes y F. G. Guimarães. (2021). Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning. IEEE Access, 9, 19195-19207. https://doi.org/10.1109/ACCESS.2021.3054468 DOI: https://doi.org/10.1109/ACCESS.2021.3054468
Pan, M., Yang, Y., Zheng, Z. y Pan, W. (2022). Artificial Intelligence and Robotics for Prefabricated and Modular Construction: A Systematic Literature Review. Journal of Construction Engineering and Management, 148(9), 03122004. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002324 DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0002324
Pospieszny, P., Czarnacka-Chrobot, B. y Kobylinski, A. (2018). An effective approach for software project effort and duration estimation with machine learning algorithms. Journal of Systems and Software, 137, 184-196. https://doi.org/10.1016/j.jss.2017.11.066 DOI: https://doi.org/10.1016/j.jss.2017.11.066
Project Management Institute. (2017). Guía de los Fundamentos Para la Dirección de Proyectos. Pmbok.
Ronghui, S. y Liangrong, N. (2022). An intelligent fuzzy-based hybrid metaheuristic algorithm for analysis the strength, energy and cost optimization of building material in construction management. Engineering with Computers, 38(4), 2663-2680. https://doi.org/10.1007/s00366-021-01420-9 DOI: https://doi.org/10.1007/s00366-021-01420-9
Rouhiainen, L. (2018). Inteligencia artificial. Alienta Editorial.
Russell, S. J. (2010). Artificial intelligence a modern approach. Pearson.
Sacks, R., Brilakis, I., Pikas, E., Xie, H. S. y Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering, 1, e14. https://doi.org/10.1017/dce.2020.16 DOI: https://doi.org/10.1017/dce.2020.16
Saka, A. B., Oyedele, L. O., Akanbi, L. A., Ganiyu, S. A., Chan, D. W. M. y Bello, S. A. (2023). Conversational artificial intelligence in the AEC industry: A review of present status, challenges and opportunities. Advanced Engineering Informatics, 55, 101869. https://doi.org/10.1016/j.aei.2022.101869 DOI: https://doi.org/10.1016/j.aei.2022.101869
Salem, T. y Dragomir, M. (2022). Options for and Challenges of Employing Digital Twins in Construction Management. Applied Sciences, 12, 2928. https://doi.org/10.3390/app12062928 DOI: https://doi.org/10.3390/app12062928
Secretaría General de Industria y de la pyme. (2022). Herramienta de Autodiagnóstico Digital Avanzada (HADA). https://acortar.link/2vPWv7
Wu, L. y AbouRizk, S. (2021). Towards construction’s digital future: A roadmap for enhancing data value. In Canadian Society of Civil Engineering Annual Conference, 225-238. Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-19-1029-6_17
Zabala-Vargas, S., Jaimes-Quintanilla, M. y Jimenez-Barrera, M. H. (2023). Big Data, Data Science, and Artificial Intelligence for Project Management in the Architecture, Engineering, and Construction Industry: A Systematic Review. Buildings, 13(12), 29-44. DOI: https://doi.org/10.3390/buildings13122944
Zabala-Vargas, S., Jiménez-Barrera, M., Vargas-Sanchez, L. y Jaimes-Quintanilla, M. (2023). Big data in construction project management: The Colombian northeast case. Life-Cycle of Structures and Infrastructure Systems, 1, 3476-3483. https://doi.org/0.1201/9781003323020 DOI: https://doi.org/10.1201/9781003323020-425
Zandi, Y., Issakhov, A., Roco Videla, Á., Wakil, K., Wang, Q., Cao, Y., Selmi, A., Agdas, A. S., Fu, L. y Qian, X. (2021). A review study of application of artificial intelligence in construction management and composite beams. Journal of Building Engineering, 44, 103299. DOI: https://doi.org/10.1016/j.jobe.2021.103299
Zhang, Y., Ren, S., Liu, Y., Sakao, T. y Huisingh, D. (2017). A framework for Big Data driven product lifecycle management. Journal of Cleaner Production, 159, 229-240. DOI: https://doi.org/10.1016/j.jclepro.2017.04.172
Zhou, Y., Hu, Z.-Z. y Zhang, W.-Z. (2018). Development and Application of an Industry Foundation Classes-Based Metro Protection Information Model. Mathematical Problems in Engineering, 1-20. https://doi.org/10.1155/2018/1820631 DOI: https://doi.org/10.1155/2018/1820631
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 María Alejandra Jaimes-Quintanilla, Sergio Zabala-Vargas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).