Chemical and Mechanical Soil Stabilization Techniques for Foundations
DOI:
https://doi.org/10.31637/epsir-2024-325Keywords:
geotechnical, quicklime, stabilization, compressive strength, permeability, clay, dosage, plasticityAbstract
Introduction: The geotechnical study is crucial for foundation design and herein the feasibility of stabilizing soil from Quillollaco Formation in Loja, Ecuador with quicklime. Methodology: Laboratory tests followed ASTM standards. Unaltered soil samples were extracted at depths ranging from 2,00 to 3.00 m and fed quicklime at varying percentages (13,00 to 21,00% and 3,00% for quicklime) during curing periods of 7 to 28 days. Before obtaining results, the soil was classified by primary classification. Laboratory tests included Atterberg limits, Standard Proctor, unconfined compressive strength and permeability.
Results: Consequently, the results indicated that the soil is primarily clay with low plasticity. Although the addition of quicklime increases plasticity and compressive strength, the improvement is minimal and varies with dosage and cure time. Greater compaction and workability are observed with lower quicklime contents. Regarding permeability, moderate to high improvement is recorded with quicklime addition, suggesting enhanced drainage capacity. Disscusion: Stabilization of quicklime soil may improve some geomechanical properties, but its effectiveness and profitability could be limited, especially in clay soils of low plasticity. Emphasis is placed on the need to consider soil stabilization alternatives that are efficient and sustainable from economic and environmental points of view.
Downloads
References
Alfaro Rojas, D. C. A., & Mora Sanabria, F. A. (2014). Modelo físico para la medición de la permeabilidad en suelos cohesivos (cabeza variable) [Trabajo de grado, Universidad Católica de Colombia]. Repositorio Institucional Universidad Católica de Colombia - RIUCaC. http://hdl.handle.net/10983/1684
Angulo Roldan, M., & Zavaleta Papa, C. N. (2020). Estabilización de suelos arcillosos con cal para el mejoramiento de las propiedades físico-mecánicas como capa de rodadura en la prolongación Navarro Cauper, distrito San Juan – Maynas – Iquitos, 2019 [Tesis de grado, Universidad Científica del Perú]. http://hdl.handle.net/20.500.14503/1220
ASTM International. (2006). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil (ASTM D2166-06). ASTM International. https://www.astm.org/d2166-06.html
ASTM International. (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³) (600 kN-m/m³) (ASTM D698-12). ASTM International. https://doi.org/10.1520/D0698-12 DOI: https://doi.org/10.1520/D0698-12
ASTM International. (2016). Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (ASTM D5084-16a). ASTM International. https://doi.org/10.1520/D5084-16A DOI: https://doi.org/10.1520/D5084-16A
ASTM International. (2017). Standard Practice for Description and Identification of Soils (Visual-Manual Procedure) (ASTM D2488-17e01). ASTM International. https://doi.org/10.1520/D2488-17E01 DOI: https://doi.org/10.1520/D2488-17E01
ASTM International. (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (ASTM D4318-17e01). ASTM International. https://doi.org/10.1520/D4318-17E01 DOI: https://doi.org/10.1520/D4318-17E01
Baldovino, J. A., Moreira, E. B., Izzo, dos Santos, R. L., & Rose, J. L. (2018). Empirical Relationships with Unconfined Compressive Strength and Split Tensile Strength for the Long Term of a Lime-Treated Silty Soil. Journal of Materials in Civil Engineering, 30(8), 1-7. https://doi.org/10.1061/(asce)mt.1943-5533.0002378 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002378
Bauzá Castelló, J. D. (2015). El tratamiento de los suelos arcillosos con cal. Comportamiento mecánico y evolución a largo plazo ante cambios de humedad [Tesis doctoral, Universidad de Sevilla]. Repositorio idUS. http://hdl.handle.net/11441/32957
Bustamante Calderón, D., & Cabrera Jiménez, K. (2010). Levantamiento Geológico-Estructural de los sectores 3 y 4 de la Zona 5 del límite urbano de la ciudad de Loja a escala 1:5000 para determinar la suceptibilidad del terreno [Tesis de grado, Universidad Nacional de Loja]. Repositorio Digital UNL. https://dspace.unl.edu.ec/jspui/handle/123456789/16305
Consoli, N. C., da Silva Lopes, L., & Heineck, K. S. (2009). Key Parameters for the Strength Control of Lime Stabilized Soils. Journal of Materials in Civil Engineering, 21(5), 212-216. https://doi.org/10.1061/(asce)0899-1561(2009)21:5(210) DOI: https://doi.org/10.1061/(ASCE)0899-1561(2009)21:5(210)
Das, B. M. (2015). Fundamentos de Ingeniería Geotécnica (4th ed.). CENGAGE Learning. https://n9.cl/9o1qa
Enrique Espinoza, Z. A., & Montes Romero, C. J. (2020). Estabilización De Suelos Arcillosos Mediante Residuos De Conchas De Mejillón Y Cal Viva En El Sector Vial De Paria-Recrish-Ancash [Tesis de grado, Universidad César Vallejo]. Repositorio Institucional UCV. https://hdl.handle.net/20.500.12692/102116
Espinosa, A. B., López-Ausín, V., Fiol, F., Serrano-López, R., & Ortega-López, V. (2023). Analysis of the deformational behavior of a clayey foundation soil stabilized with ladle furnace slag (LFS) using a finite element software. Materials Today: Proceedings, 3–6. https://doi.org/10.1016/j.matpr.2023.03.721 DOI: https://doi.org/10.1016/j.matpr.2023.03.721
Hamid, W., & Alnuaim, A. (2023). Evaluation of the durability and strength of stabilized sabkha soil with geopolymer. Case Studies in Construction Materials, 18, 2–16. https://doi.org/10.1016/j.cscm.2023.e02051 DOI: https://doi.org/10.1016/j.cscm.2023.e02051
Instituto Nacional de Vías. (2012). Descripción E Identificación De Suelos (Procedimiento Visual Y Manual) (E-102). https://n9.cl/jz1d7
Jara Anyaypoma, R. (2014). Efecto de la Cal como Estabilizante de una Subrasante de suelo Arcilloso [Tesis de grado, Universidad Nacional de Cajamarca]. Repositorio Institucional UNC. http://hdl.handle.net/20.500.14074/686
Jiang, P., Zhou, L., Zhang, W., Wang, W., & Li, N. (2022). Unconfined Compressive Strength and Splitting Tensile Strength of Lime Soil Modified by Nano Clay and Polypropylene Fiber. Crystals, 12(2). https://doi.org/10.3390/cryst12020285 DOI: https://doi.org/10.3390/cryst12020285
Khodabandeh, M. A., Nagy, G., & Török, Á. (2023). Stabilization of collapsible soils with nanomaterials, fibers, polymers, industrial waste, and microbes: Current trends. Construction and Building Materials, 368(130463), 1–17. https://doi.org/10.1016/j.conbuildmat.2023.130463 DOI: https://doi.org/10.1016/j.conbuildmat.2023.130463
Makusa, G. P. (2013). Soil Stabilization Methods and Materials in Engineering Practice: State of the art review. https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-24093
Moale Quispe, A. B., & Rivera Justo, E. J. (2019). Estabilización química de suelos arcillosos con cal para su uso como subrasante en vías terrestres de la localidad de Villa Rica [Tesis de grado, Universidad Peruana de Ciencias Aplicadas]. Repositorio Institucional UPC. http://hdl.handle.net/10757/648846
Parra Gómez, M. (2018). Estabilización de un suelo con cal y ceniza volante [Tesis de grado, Universidad Católica de Colombia]. Repositorio Institucional UCatólica. https://hdl.handle.net/10983/22856
Romero-Ruiz, A., Linde, N., Keller, T., & Or, D. (2018). A Review of Geophysical Methods for Soil Structure Characterization. Reviews of Geophysics, 56(4), 672-697. https://doi.org/10.1029/2018RG000611 DOI: https://doi.org/10.1029/2018RG000611
Thyagaraj, T., & Zodinsanga, S. (2015). Laboratory Investigations of In Situ Stabilization of an Expansive Soil by Lime Precipitation Technique. Journal of Materials in Civil Engineering, 27(7), 1–8. https://doi.org/10.1061/(asce)mt.1943-5533.0001184 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001184
Ulloa López, H. (2015). Estabilización de suelos cohesivos por medio de Cal en las Vías de la comunidad de San Isidro del Pegón, municipio Potosí- Rivas [Tesis de grado, Universidad Nacional Autónoma de Nicaragua]. Repositorio Institucional UNAN-Managua. https://repositorio.unan.edu.ni/6456/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jose Luis Chavez Torres (Corresponding Author); Feng Tugen, Kunyong Zhang, Maria Gonzalez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).