Metacognition and critical thinking in the Artificial Intelligence society: from the classroom to society

Authors

DOI:

https://doi.org/10.31637/epsir-2024-492

Keywords:

artificial intelligence, metacognition, critical thinking, e-portfolio, active methodologies, university social responsibility, innovation, automatic learning

Abstract

Introduction In our societies, information, metacognition and critical thinking have become increasingly relevant.With the rise of Artificial Intelligence (AI), these skills are even more crucial. Methodology This study explores the relationship between metacognition, critical thinking and AI in education and society. In our work we want to highlight the need to incorporate strategies that enhance metacognition in the classroom and develop critical thinking. Results: We propose an agile and flexible tool, such as digital portfolios to collect the learning acquired with and without the use of AI. Conclusions This will also allow us to work in the classroom on the ethical line of AI, so necessary in these times.

Downloads

Download data is not yet available.

Author Biography

Anabell Fondón Ludeña, Rey Juan Carlos University

She holds a PhD in Sociology (UEX), a Master in Scientific Dissemination and Knowledge Management and a degree in Sociology (USAL). She has an extensive complementary training focused on teaching and research with a gender perspective. Currently, she is a tenured professor at the URJC. Since 2022 she is the coordinator of the Teaching Innovation Group of Sociology (GIDSOC) of this university. Her lines of work and research are linked to the Sociology of Education, Social Innovation, Sociology of Consumption, subjective well-being and active methodologies.

References

Bostrom, N. y Yudkowsky, E. (2014). The Ethics of Artificial Intelligence. En K. Frankish y W. M. Ramsey (Eds.), The Cambridge Handbook of Artificial Intelligence (pp. 316-334). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139046855.020

Buolamwini, J. y Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of Machine Learning Research, 81, 1-15.

Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society. DOI: https://doi.org/10.2139/ssrn.2660674

Castelvecchi, D. (2016). Can we open the black box of AI? Nature News. DOI: https://doi.org/10.1038/538020a

Comisión Europea. (2018a). Artificial Intelligence. A European Perspective. https://lc.cx/EpCMGF

Comisión Europea. (2019). A Definition of AI. Main Capabilities and Disciplines. https://lc.cx/YiJfQM

Comisión Europea. (2020). Libro Blanco sobre la Inteligencia Artificial. Un Enfoque Europeo Orientado a la Excelencia y la Confianza. https://bit.ly/4cZDIHw

Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. ERIC Document Reproduction Service. https://eric.ed.gov/?id=ED315423

Field, J. (2000). Lifelong Learning and the New Educational Order. Trentham Books.

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American psychologist, 34(10), 906-911. https://doi.org/10.1037/0003-066X.34.10.906 DOI: https://doi.org/10.1037//0003-066X.34.10.906

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H. y Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415. https://doi.org/10.1073/pnas.1319030111 DOI: https://doi.org/10.1073/pnas.1319030111

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64-74. http://dx.doi.org/10.1119/1.18809 DOI: https://doi.org/10.1119/1.18809

Johnson, D. W., Johnson, R. T. y Smith, K. A. (1998). Cooperative learning returns to college: What evidence is there that it works? The Magazine of Higher Learning, 30(4), 26-35. https://doi.org/10.1080/00091389809602629 DOI: https://doi.org/10.1080/00091389809602629

Ley Orgánica 2/2006, de mayo, de Educación publicada en «BOE» núm. 106, de 04/05/2006. https://www.boe.es/buscar/act.php?id=BOE-A-2006-7899

McPeck, J. E. (1990). Teaching critical thinking. Routledge.

Michael, J. (2006). Where’s the evidence that active learning works? Advances in Physiology Education, 30(4), 159-167. https://doi.org/10.1152/advan.00053.2006 DOI: https://doi.org/10.1152/advan.00053.2006

Mittelstadt, B., Allo, P., Taddeo, M., Wachter, S. y Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society. DOI: https://doi.org/10.1177/2053951716679679

Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223-231. https://doi.org/10.1002/j.2168-9830.2004.tb00809.x DOI: https://doi.org/10.1002/j.2168-9830.2004.tb00809.x

Russell, S. J. y Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson Education Limited.

Vega, A. y Sánchez, M. (2020). Aprendizaje activo: una estrategia pedagógica transversal. Revista de Innovación Educativa, 25(1), 45-56.

Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into practice, 41(2), 64-70. https://doi.org/10.1207/s15430421tip4102_2 DOI: https://doi.org/10.1207/s15430421tip4102_2

Zuboff, S. (2019). The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power. Public Affairs.

Published

2024-08-28

How to Cite

Fondón Ludeña, A. (2024). Metacognition and critical thinking in the Artificial Intelligence society: from the classroom to society . European Public & Social Innovation Review, 9, 1–19. https://doi.org/10.31637/epsir-2024-492

Issue

Section

Education