On Actor Network Theory and the role of AI in climate change

Authors

  • Jorge Luis Morton Gutierrez Metropolitan Autonomous University image/svg+xml

DOI:

https://doi.org/10.31637/epsir-2024-518

Keywords:

Climate change, actant, artificial intelligence, anti-program, associations, power relations, intensive use

Abstract

Introduction:  Climate change is presented as the greatest challenge for humanity. Methodology: However, new technologies, especially artificial intelligence (AI), offer fundamental tools to understand this phenomenon and develop mechanisms to mitigate it, adapt to it and even combat it. Results: Despite its potential benefits, AI also plays a significant role in contributing to the problems associated with climate change, both in its training, implementation and maintenance process, and in its notable consumption of resources such as water. Discussions and Conclusion: Therefore, this essay seeks to employ the tools and concepts of Actor-Network Theory to critically analyze the role of AI in climate change: how its implementation and governance can be designed to maximize benefits and minimize negative impacts, as well as how to understand how it acts as an agent that can aggravate this global phenomenon.

Downloads

Download data is not yet available.

Author Biography

Jorge Luis Morton Gutierrez, Metropolitan Autonomous University

D. student at the Universidad Autónoma Metropolitana Unidad Cuajimalpa in Mexico City. He has worked on publications about the social impact of video games, the role of Network Actor Theory as a tool for analyzing the impacts of the COVID-19 pandemic. And he has mainly focused on the analysis of power relations around Artificial Intelligence using the tools of Actor Network Theory.

References

Blackman, R. (2022). Ethical machines: Your concise guide to totally unbiased, transparent, and respectful AI. Harvard Business Review Press.

Callon, M. (1986). Éléments pour une sociologie de la traduction: La domestication des coquilles Saint-Jacques et des marins-pêcheurs dans la baie de Saint-Brieuc. L’Année sociologique, 36, 169-208.

Changlani, Kishan y Renuka Thakore. Artificial Intelligence for Climate Action. https://doi.org/10.13140/RG.2.2.21102.18245

Chen, L., Chen, Z., Zhang, Y., Liu, Y., Osman, A. I., Farghali, M., Hua, J., Al-Fatesh, A., Ihara, I., Rooney, D. W. y Yap, P. (2023). Artificial intelligence-based solutions for climate change: a review. Environmental Chemistry Letters, 21(5), 2525-2557. https://doi.org/10.1007/s10311-023-01617-y DOI: https://doi.org/10.1007/s10311-023-01617-y

Cowls, J., Tsamados, A., Taddeo, M. y Floridi, L. (2021). The AI gambit: leveraging artificial intelligence to combat climate change—opportunities, challenges, and recommendations. AI & Society, 38(1), 283-307. https://acortar.link/ORJcCh DOI: https://doi.org/10.1007/s00146-021-01294-x

De los Santos, M. D. L., Do, K., Muller, M. y Savage, S. (2024). Designing sousveillance tools for gig workers. https://doi.org/10.1145/3613904.3642614 DOI: https://doi.org/10.1145/3613904.3642614

Dhar, P. (2020). The carbon impact of artificial intelligence. Nature Machine Intelligence, 2(8), 423–425. https://doi.org/10.1038/s42256-020-0219-9 DOI: https://doi.org/10.1038/s42256-020-0219-9

George, A., George, A. y Martin, A. (2023). The Environmental Impact of AI: A case study of water consumption by Chat GPT. Zenodo. CERN European Organization for Nuclear Research. https://doi.org/10.5281/zenodo.7855594

Gonzalo, M. (2023, 7 de septiembre). El impacto climático de la IA y su huella ecológica. Newtral. Newtral. https://acortar.link/rxNv4V

IPCC. (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. Geneva, Switzerland: IPCC. https://acortar.link/UC7Jjk

Latour, B. (1990). Technology is Society Made Durable. The Sociological Review, 38(1_suppl), 103-131. https://doi.org/10.1111/j.1467-954X.1990.tb03350.x DOI: https://doi.org/10.1111/j.1467-954X.1990.tb03350.x

Latour, B. (1993). We have never been modern. Harvard University Press.

Latour, B. (2017). On Actor-Network Theory. A few clarifications, plus more than a few complications. Logos, 27(1), 173-197. https://acortar.link/qfCYFJ DOI: https://doi.org/10.22394/0869-5377-2017-1-173-197

Lawie, M. (2023). Analysing the impact of CO2 emissions from the largest artificial intelligence systems and its consequences for global warming. https://doi.org/10.13140/RG.2.2.24138.95680

Li, P., Yang, J., Islam, M. A. y Ren, Sh. (2023). Making AI less «thirsty»: Uncovering and addressing the secret water footprint of AI models. arXiv:2304.03271. http://arxiv.org/abs/2304.03271

Luccioni, A. S. y Hernandez-Garcia, A. (2023). Counting carbon: A survey of factors influencing the emissions of machine learning. arXiv:2302.08476. https://doi.org/10.48550/arXiv.2302.08476

Masterson, V. (12 de febrero de 2024). 9 ways AI is helping tackle climate change. World Economic Forum. https://bit.ly/3W9k9pp

Mohammad, A. y Mahjabeen, F. (2023). Revolutionizing solar energy with AI-driven enhancements in photovoltaic technology. Jurnal Multidisiplin Ilmu, 2. https://journal.mediapublikasi.id/index.php/bullet/article/view/3427 DOI: https://doi.org/10.47709/ijmdsa.v2i1.2599

Olatunde-Aiyedun, T. y Olatunde, M. (2022). State and prediction of the global climate change: 2012-2026.

Quach, K. (4 de noviembre de 2020). AI me to the Moon. Carbon footprint for “training GPT-3” same as driving to our natural satellite and back. The Register. https://bit.ly/3W9wYQL

Raihan, A. (2023). Artificial intelligence and machine learning applications in forest management and biodiversity conservation. Natural Resources Conservation and Research, 6(2), 3825. https://doi.org/10.24294/nrcr.v6i2.3825 DOI: https://doi.org/10.24294/nrcr.v6i2.3825

Rayhan, A. y Rayhan, S. (2023). The role of artificial intelligence in climate change mitigation and adaptation. Artificial Intelligence. https://doi.org/10.13140/RG.2.2.10346.70087/1

Star, S. L. y Griesemer, J. R. (1989). Institutional Ecology, `Translations’ and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum of Vertebrate Zoology, 1907-39. Social Studies of Science, 19(3), 387-420. https://doi.org/10.1177/030631289019003001 DOI: https://doi.org/10.1177/030631289019003001

Taddeo, M. y Floridi, L. (2018). How AI can be a force for good. Science, 361(6404), 751-752. https://doi.org/10.1126/science.aat5991 DOI: https://doi.org/10.1126/science.aat5991

Wong, C. (2024). How climate change is hitting Europe: three graphics reveal health impacts. Nature Climate Change. https://pubmed.ncbi.nlm.nih.gov/38890517/ DOI: https://doi.org/10.1038/d41586-024-02006-3

Published

2024-08-15

How to Cite

Morton Gutierrez, J. L. (2024). On Actor Network Theory and the role of AI in climate change. European Public & Social Innovation Review, 9, 1–17. https://doi.org/10.31637/epsir-2024-518

Issue

Section

INNOVATING IN THE REDEFINITION OF THE RELATIONSHIP BETWEEN HUMAN BEINGS AND THEIR ENVIRONMENT