The duality of artificial intelligence in supply chain sustainability: a narrative review
DOI:
https://doi.org/10.31637/epsir-2024-552Keywords:
Artificial intelligence, supply chain, sustainability, carbon footprint, logistics optimization, demand forecasting, inventory management, operational efficiencyAbstract
Introduction: In the current digital age, artificial intelligence (AI) is crucial for advancing sustainable supply chains by addressing inefficiencies and reducing carbon emissions from growing energy demand. Methodology: A narrative literature review evaluated articles in Scopus and Science Direct databases from 2022 to 2024 to capture recent advancements in AI's impact on supply chain sustainability. Results: Findings highlight AI's ability to optimize logistics processes, improve demand forecasting, and efficiently manage inventories, reducing carbon footprint and enhancing resource use. Discussions: Despite significant benefits, AI implementation faces challenges such as high energy consumption and data integration complexity. Ethical and social implications must be considered to maximize benefits and minimize negative impacts. Conclusions: Integrating AI into supply chain management represents a significant advancement in sustainability and operational efficiency. More efficient technologies and policies supporting sustainable AI adoption are needed to overcome challenges and maximize benefits.
Downloads
References
Abate, Y., Ukpabi, C. y Karjaluoto, H. (2023). AI -Sustainability Nexus: A Framework for Future Research. 23.
ABB. (2022, June 29). ABB Smart Building’s AI-Powered SaaS Increases Energy Efficiency, Reduces Carbon Footprint. ABB. https://bit.ly/4cHjp1R
Akter, S., Babu, M. M., Hani, U., Sultana, S., Bandara, R. y Grant, D. (2024). Unleashing the power of artificial intelligence for climate action in industrial markets. Industrial Marketing Management, 117, 92-113. https://doi.org/10.1016/j.indmarman.2023.12.011 DOI: https://doi.org/10.1016/j.indmarman.2023.12.011
Allbirds. (2022). Allbirds 2022 Flight Status. Sustainability Report. https://www.allbirds.com/pages/sustainable-practices#reality
Al-Sakkari, E. G., Ragab, A., Dagdougui, H., Boffito, D. C. y Amazouz, M. (2024). Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities. Science of The Total Environment, 917, 170085. https://doi.org/10.1016/j.scitotenv.2024.170085 DOI: https://doi.org/10.1016/j.scitotenv.2024.170085
Amirteimoori, A., Allahviranloo, T., Zadmirzaei, M. y Hasanzadeh, F. (2023). On the environmental performance analysis: A combined fuzzy data envelopment analysis and artificial intelligence algorithms. Expert Systems with Applications, 224, 119953. https://doi.org/10.1016/j.eswa.2023.119953 DOI: https://doi.org/10.1016/j.eswa.2023.119953
Ammanath, B. (2024). How to manage AI’s energy demand—Today and in the future. World Economic Forum. https://bit.ly/3XV4IUr
Badghish, S. y Soomro, Y. A. (2024). Artificial Intelligence Adoption by SMEs to Achieve Sustainable Business Performance: Application of Technology–Organization–Environment Framework. Sustainability, 16(5). https://doi.org/10.3390/su16051864 DOI: https://doi.org/10.3390/su16051864
Bains, A., Sridhar, K., Dhull, S. B., Chawla, P., Sharma, M., Sarangi, P. K. y Gupta, V. K. (2024). Circular bioeconomy in carbon footprint components of nonthermal processing technologies towards sustainable food system: A review. Trends in Food Science & Technology, 149, 104520. https://doi.org/10.1016/j.tifs.2024.104520 DOI: https://doi.org/10.1016/j.tifs.2024.104520
Baker, J. D. (2016). The Purpose, Process, and Methods of Writing a Literature Review. AORN Journal, 103(3), 265-269. https://doi.org/10.1016/j.aorn.2016.01.016 DOI: https://doi.org/10.1016/j.aorn.2016.01.016
Batra, N. (2023, November 1). Domino’s Pizza: Ensuring customer satisfaction with data-driven demand planning in Microsoft Dynamics 365. Microsoft Customers Stories. https://bit.ly/3xTo6Xc
Boualam, M. (2021, March 28). How IoT, AI, and Blockchain Can Create a Sustainable Supply Chain | SCM Globe. https://bit.ly/4fduRnN
Capgemini Research Institute. (2024). Data: A powerful ally in tackling Scope 3 emissions-reduction targets. Capgemini USA. https://bit.ly/3xTXUf0
Chan, H.-L. y Choi, T.-M. (2023). Logistics management for the future: The IJLRA framework. International Journal of Logistics Research and Applications, 1-19. https://doi.org/10.1080/13675567.2023.2286352 DOI: https://doi.org/10.1080/13675567.2023.2286352
Chen, P., Chu, Z. y Zhao, M. (2024). The Road to corporate sustainability: The importance of artificial intelligence. Technology in Society, 76, 102440. https://doi.org/10.1016/j.techsoc.2023.102440 DOI: https://doi.org/10.1016/j.techsoc.2023.102440
Colon, C., Brännström, Å., Rovenskaya, E. y Dieckmann, U. (2021). Fragmentation of production amplifies systemic risks from extreme events in supply-chain networks. PLOS ONE, 15(12), e0244196. https://doi.org/10.1371/journal.pone.0244196 DOI: https://doi.org/10.1371/journal.pone.0244196
Conrad, R. (2024, March 1). AI in Logistics: Driving Sustainability and Efficiency in Supply Chains. RTS Labs. https://rtslabs.com/ai-logistics-sustainability-efficiency/
Covariant. (n.d.). Otto Group strengthens its logistics network with hundreds of AI-powered robots. https://bit.ly/3xTo81g
Crawford, K. (2024). Generative AI’s environmental costs are soaring—And mostly secret. Nature, 626(8000), 693–693. https://doi.org/10.1038/d41586-024-00478-x DOI: https://doi.org/10.1038/d41586-024-00478-x
Delanoë, P., Tchuente, D. y Colin, G. (2023). Method and evaluations of the effective gain of artificial intelligence models for reducing CO2 emissions. Journal of Environmental Management, 331, 117261. https://doi.org/10.1016/j.jenvman.2023.117261 DOI: https://doi.org/10.1016/j.jenvman.2023.117261
Dhiman, R., Miteff, S., Wang, Y., Ma, S.-C., Amirikas, R. y Fabian, B. (2024). Artificial Intelligence and Sustainability—A Review. Analytics, 3(1), 140-164. https://doi.org/10.3390/analytics3010008 DOI: https://doi.org/10.3390/analytics3010008
Ding, T., Li, J., Shi, X., Li, X. y Chen, Y. (2023). Is artificial intelligence associated with carbon emissions reduction? Case of China. Resources Policy, 85, 103892. https://doi.org/10.1016/j.resourpol.2023.103892 DOI: https://doi.org/10.1016/j.resourpol.2023.103892
Dohale, V., Kamble, S., Ambilkar, P., Gold, S., y Belhadi, A. (2024). An integrated MCDM-ML approach for predicting the carbon neutrality index in manufacturing supply chains. Technological Forecasting and Social Change, 201, 123243. https://doi.org/10.1016/j.techfore.2024.123243 DOI: https://doi.org/10.1016/j.techfore.2024.123243
Fabri, L., Weissflog, J., y Wenninger, S. (2024). Unraveling the complexity: A taxonomy for characterizing and structuring smart energy services in the building sector. Journal of Cleaner Production, 461, 142522. https://doi.org/10.1016/j.jclepro.2024.142522 DOI: https://doi.org/10.1016/j.jclepro.2024.142522
Fernando, Y., Al-Madani, M. H. M. y Shaharudin, M. S. (2023). COVID-19 and global supply chain risks mitigation: Systematic review using a scientometric technique. Journal of Science and Technology Policy Management, ahead-of-print(ahead-of-print). https://doi.org/10.1108/JSTPM-01-2022-0013 DOI: https://doi.org/10.1108/JSTPM-01-2022-0013
Foy, K. (2023, October 5). New tools are available to help reduce the energy that AI models devour. MIT News | Massachusetts Institute of Technology. https://bit.ly/3Ll0qhG
Gaur, L., Afaq, A., Arora, G. K. y Khan, N. (2023). Artificial intelligence for carbon emissions using system of systems theory. Ecological Informatics, 76, 102165. https://doi.org/10.1016/j.ecoinf.2023.102165 DOI: https://doi.org/10.1016/j.ecoinf.2023.102165
Gbako, S., Paraskevadakis, D., Ren, J., Wang, J. y Radmilovic, Z. (2024). A systematic literature review of technological developments and challenges for inland waterways freight transport in intermodal supply chain management. Benchmarking: An International Journal, ahead-of-print(ahead-of-print). https://doi.org/10.1108/BIJ-03-2023-0164 DOI: https://doi.org/10.1108/BIJ-03-2023-0164
Gow, G. (2020, September 3). Environmental Sustainability And #AI [LinkedIn]. https://bit.ly/3Y3qo0z
Gray, C. (2022, May 5). HAVI: driving savings in the supply chain with AI. AAI Magazine, Data&Analytics. https://bit.ly/3xISlAh
Green, B., Johnson, C. y Adams, A. (2006). Writing Narrative Literature Reviews for Peer-Reviewed Journals: Secrets of the Trade. Journal of Chiropractic Medicine, 5, 101-117. https://doi.org/10.1016/S0899-3467(07)60142-6 DOI: https://doi.org/10.1016/S0899-3467(07)60142-6
Herold, D. M. y Marzantowicz, Ł. (2023). Supply chain responses to global disruptions and its ripple effects: An institutional complexity perspective. Operations Management Research, 16(4), 2213-2224. https://doi.org/10.1007/s12063-023-00404-w DOI: https://doi.org/10.1007/s12063-023-00404-w
Hewlett Packard. (2024). Climate Action. https://bit.ly/4f12LMo
Hong, Z. y Xiao, K. (2024). Digital economy structuring for sustainable development: The role of blockchain and artificial intelligence in improving supply chain and reducing negative environmental impacts. Scientific Reports, 14(1), 3912. https://doi.org/10.1038/s41598-024-53760-3 DOI: https://doi.org/10.1038/s41598-024-53760-3
IBM. (2024, June 24). IBM Supply Chain Intelligence Suite. https://ibm.co/4cBVIYQ
Juárez, C. (2024, May 17). Nueva IA de Walmart reduce desperdicio de perecederos y textiles en anaqueles. The Logistics World. https://bit.ly/3LnUkwZ
Kishan, S. y Saul, J. (2024, January 25). AI Needs So Much Power That Old Coal Plants Are Sticking Around. Bloomberg.Com. https://bloom.bg/4eVEUNT
Kolasani, S. (2024). Revolutionizing manufacturing, making it more efficient, flexible, and intelligent with Industry 4.0 innovations. International Journal of Sustainable Development Through AI, ML and IoT, 3(1), 1-17. https://ijsdai.com/index.php/IJSDAI/article/view/46
Kusznir, F. (n.d.). How AI is accelerating the Energy Transition and carbon negative. GE Digital. https://invent.ge/4cAelfP
Lynn, J. (2024, May 28). Nvidia’s Record Earnings Overshadow New Standard in Chip Energy Efficiency. Carbon Credits. https://bit.ly/4csZrI5
Law, M. (2024, January 22). How Unilever Uses AI & Digital Solutions in its Operations. Technology Magazine. https://bit.ly/4f2iD0U
Lemos, S. I. C., Ferreira, F. A. F., Zopounidis, C., Galariotis, E. y Ferreira, N. C. M. Q. F. (2022). Artificial intelligence and change management in small and medium-sized enterprises: An analysis of dynamics within adaptation initiatives. Annals of Operations Research. https://doi.org/10.1007/s10479-022-05159-4 DOI: https://doi.org/10.1007/s10479-022-05159-4
Lin, J., Zeng, Y., Wu, S. y Luo, X. (Robert). (2024). How does artificial intelligence affect the environmental performance of organizations? The role of green innovation and green culture. Information & Management, 61(2), 103924. https://doi.org/10.1016/j.im.2024.103924 DOI: https://doi.org/10.1016/j.im.2024.103924
Maghsoudi, M., Shokouhyar, S., Ataei, A., Ahmadi, S. y Shokoohyar, S. (2023). Co-authorship network analysis of AI applications in sustainable supply chains: Key players and themes. Journal of Cleaner Production, 422, 138472. https://doi.org/10.1016/j.jclepro.2023.138472 DOI: https://doi.org/10.1016/j.jclepro.2023.138472
Markets and Markets. (2023). Carbon Footprint Management Market Growth Drivers & Opportunities. https://bit.ly/3zGYFbZ
Marr, B. (2019, April 8). The Fascinating Ways PepsiCo Uses Artificial Intelligence And Machine Learning To Deliver Success. Forbes. https://bit.ly/4cCJu2b
Matias, Y. (2023, October 10). Project Green Light’s work to reduce urban emissions using AI. Google. https://bit.ly/3xWl709
Nahar, S. (2024). Modeling the effects of artificial intelligence (AI)-based innovation on sustainable development goals (SDGs): Applying a system dynamics perspective in a cross-country setting. Technological Forecasting and Social Change, 201, 123203. https://doi.org/10.1016/j.techfore.2023.123203 DOI: https://doi.org/10.1016/j.techfore.2023.123203
Nemitallah, M. A., Nabhan, M. A., Alowaifeer, M., Haeruman, A., Alzahrani, F., Habib, M. A., Elshafei, M., Abouheaf, M. I., Aliyu, M. y Alfarraj, M. (2023). Artificial intelligence for control and optimization of boilers’ performance and emissions: A review. JournalofCleanerProduction, 417, 138109. https://doi.org/10.1016/j.jclepro.2023.138109 DOI: https://doi.org/10.1016/j.jclepro.2023.138109
Ochoa-Barragán, R., Serrano-Arévalo, T. I., Pulido-Ocegueda, J. C., Cerda-Flores, S. C., Ramírez-Márquez, C., Nápoles-Rivera, F. y Ponce-Ortega, J. M. (2024). Sustainable lime production in Michoacan Mexico: An optimal and equitable approach with machine learning. Journal of Cleaner Production, 442, 141017. https://doi.org/10.1016/j.jclepro.2024.141017 DOI: https://doi.org/10.1016/j.jclepro.2024.141017
Pasquini, N. (2024, March 20). How to Reduce AI’s Energy Consumption. Harvard Magazine, Science&Technology. https://www.harvardmagazine.com/node/85960
Pesz, B. (2023, June 12). Optimizing energy efficiency with AI-powered energy management software | Nokia. https://nokia.ly/3VY5kWJ
Qi, B., Shen, Y. y Xu, T. (2023). An artificial-intelligence-enabled sustainable supply chain model for B2C E-commerce business in the international trade. Technological Forecasting and Social Change, 191, 122491. https://doi.org/10.1016/j.techfore.2023.122491 DOI: https://doi.org/10.1016/j.techfore.2023.122491
Rico, A. (2024, May 7). Inversiones de las tecnológicas como Apple, Google y Amazon en inteligencia artificial. Diario La República. https://bit.ly/3LlbkUp
Robotics 24/7 Staff. (2023, May 10). Otto Group Works With Covariant to Apply AI Robotics to Its Logistics Network. Robotics 24/7. https://bit.ly/4bEG51m
Siemens. (2023). Sustainability report [Report]. Siemens. https://bit.ly/4f1NPNI
Timmer, M. P., Los, B., Stehrer, R. y de Vries, G. J. (2021). Correction to: Supply Chain Fragmentation and the Global Trade Elasticity: A New Accounting Framework. IMF Economic Review, 69(4), 681–681. https://doi.org/10.1057/s41308-021-00139-3 DOI: https://doi.org/10.1057/s41308-021-00139-3
Verma, S. (2019, November 19). How blockchain and IoT is making supply chain smarter. IBM Blog. https://ibm.co/3zMyCju
Wang, Q., Zhang, F., Li, R. y Sun, J. (2024). Does artificial intelligence promote energy transition and curb carbon emissions? The role of trade openness. Journal of Cleaner Production, 447, 141298. https://doi.org/10.1016/j.jclepro.2024.141298 DOI: https://doi.org/10.1016/j.jclepro.2024.141298
World Economic Forum. (2021, April 1). 4 steps to using AI in an environmentally responsible way. World Economic Forum. https://bit.ly/4eZkYK4
World Wide Technology WWT. (2023, May 26). Using AI to Reduce Energy Consumption, Cost and Carbon Emissions in Data Centers. ATC Insight. https://bit.ly/3VZklaI
Zaytsev, A. (2023, September 23). Case Study: Zara’s Comprehensive Approach to AI and Supply Chain Management. AIX | AI Expert Network. https://bit.ly/4bL2IBk
Zhou, W., Zhang, Y. y Li, X. (2024). Artificial intelligence, green technological progress, energy conservation, and carbon emission reduction in China: An examination based on dynamic spatial Durbin modeling. JournalofCleanerProduction, 446, 141142. https://doi.org/10.1016/j.jclepro.2024.141142 DOI: https://doi.org/10.1016/j.jclepro.2024.141142
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Marelby Amado Mateus (Autor de Correspondencia)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).