Low-cost virtual instrumentation applied to geotechnical testing

Autori

DOI:

https://doi.org/10.31637/epsir-2025-1234

Parole chiave:

Instrumentation, Geotechnics, Arduino, Sensors, Low-cost, Sampling, Innovation, Development, Calibration, Precision

Abstract

Introduction: In many of the current geotechnical tests, there is a need to improve data acquisition protocols, in addition to optimizing test procedures. The present work proposes the evaluation of 3 convetional sensors in geotechnical tests.  Methodology: The devices used were an S3C DC-DC linear variable differential transformer, the HC-SR04 ultrasonic distance sensor, and the SKU:SEN0193 capacitive soil moisture sensor. The general methodology consisted of the development of the communication protocol, interface, and display of readings for each device. Subsequently, the calibration and precision level of each sensor was obtained. Results: The precision and reliability of the sensors were expressed according to the linear fit, obtaining R2 correlation values ​​for all equipment. Discussion: The implemented systems allowed the detection of significant changes or trends in the behavior of the materials, obtaining satisfactory performances in most of the sensors, except for the moisture sensor SKU:SEN0193, which registered low precision. Conclusions: The use of sensors offers an alternative to improve some of the typical geotechnical tests. However, it is important to mention that a particular calibration must be carried out for each sensor to be used.

Downloads

I dati di download non sono ancora disponibili.

Biografie autore

Dante Uriel Contreras-Ferreyra, Universidad Michoacana de San Nicolás de Hidalgo

Is PhD student and professor at the Civil Engineering School of the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) in Morelia, México. He holds a Master's Degree in Transport Infrastructure from Universidad Michoacana de San Nicolás de Hidalgo. His research interest include laboratory characterization of soils, soil mechanics, pavement analysis, and instrumentation applied to geotechnical engineering.

Alondra Martínez-Rojas, Universidad Michoacana de San Nicolás de Hidalgo

Is PhD student and professor at the Civil Engineering School of the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) in Morelia, México. She holds a Master’s Degree in Transport Infrastructure from Universidad Michoacana de San Nicolás de Hidalgo. Her research interest include laboratory characterization of soils and rock, soil mechanics and stabilization, topographic analysis, and instrumentation applied to geotechnical engineering.

Nelio Pastor-Gómez, Universidad Michoacana de San Nicolás de Hidalgo

Is a professor and researcher at the Faculty of Civil Engineering of the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) in Morelia, Mexico. His research interest include Instrumentation, Virtual Instrumentation, Digital Signal Processing, and Mathematical Modeling. He holds a Ph D. In Electrical Engineering from UMSNH. He is currently a professor in the Master in Transport Infrastructure teaching the subjects Instrumentation and Statistics; in the degree in Civil Engineering, He teaches Programming and Numerical Methods at the Faculty of Civil Engineering of the UMSNH.

Carlos Chávez-Negrete, Universidad Michoacana de San Nicolás de Hidalgo

Is a professor at the Civil Engineering School of the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) in Morelia, Mexico. He holds a Ph.D. in Geotechnical Engineering from Universitat Politècnica de Catalunya, in Spain. His research interest include laboratory characterization of soils and rocks, slope stability analysis, pavement analysis, and design, the development of numerical methods for geotechnical engineering, and unsaturated soil mechanics. Chávez-Negrete is currently a professor in the master's in transport infrastructure and the Ph.D. program in civil engineering in the (UMSNH).

Riferimenti bibliografici

ASTM D2435 M-11. (2020). Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. United States: American Society for Testing and Materials. https://doi.org/10.1520/D2435_D2435M-11R20 DOI: https://doi.org/10.1520/D2435_D2435M-11R20

ASTM D2216. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. PA, United States: American Society for Testing and Materials. https://doi.org/10.1520/D2216-19 DOI: https://doi.org/10.1520/D2216-19

ASTM D698. (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). PA, United States: American Society for Testing and Materials. https://doi.org/10.1520/D0698-12R21 DOI: https://doi.org/10.1520/D0698-12R21

ASTM C-1701. (2023). Standard test method for infiltration rate of in place pervious concrete. United States: American Society for Testing and Materials. https://doi.org/10.1520/C1701_C1701M-17AR23 DOI: https://doi.org/10.1520/C1701_C1701M-17AR23

Cooley, L. A. (1999). Permeability of superpave mixtures: evaluation of field permeameters. Auburn, AL: National Center for Asphalt Technology (NCAT), Report 99-1. https://rosap.ntl.bts.gov/view/dot/13975

Das, B. M. (2009). Principles of Geotechnical Engineering. Cengage Learning.

Ekblad, J. and Isacsson, U. (2006). Influence of water on resilient properties of coarse granular materials. Road Materials and Pavement Design, 7(3), 369–404. https://doi.org/10.1080/14680629.2006.9690043 DOI: https://doi.org/10.3166/rmpd.7.369-404

Head, K. H., & Epps, R. J. (2011). Manual of Soil Laboratory Testing, Volume 2: Permeability, Shear Strength and Compressibility tests. (3rd Edition), Whittles Publishing, Dunbeath, UK.

Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (1981). An introduction to geotechnical engineering, 733. Englewood Cliffs: Prentice-Hall.

Honeywell. (2009). Model S3C DC-DC. Miniature Displacement Transducer. 008757-2-EN IL50 GLO.

Kireš, M. (2006). Mariotte bottle with side openings. The Physics Teacher, 44(6), 388-389. https://acortar.link/nlbq18 DOI: https://doi.org/10.1119/1.2336147

Kulmány, I. M., Bede-Fazekas, Á., Beslin, A., Giczi, Z., Milics, G., Kovács, B., Kovácd, M., Ambrus, B., Bede, L., & Vona, V. (2022). Calibration of an Arduino-based low-cost capacitive soil moisture sensor for smart agriculture. Journal of Hydrology and Hydromechanics, 70(3), 330-340. https://doi.org/10.2478/johh-2022-0014 DOI: https://doi.org/10.2478/johh-2022-0014

Motahhir, S., Chalh, A., El Ghzizal, A., Sebti, S., & Derouich, A. (2017). Modeling of photovoltaic panel by using proteus. Journal of Engineering Science and Technology Review, 10, 8-13. https://doi.org/10.25103/jestr.102.02 DOI: https://doi.org/10.25103/jestr.102.02

Muzdrikah, F. S., Nuha, M. S., & Rizqi, F. A. (2018). Calibration of capacitive soil moisture sensor (SKU: SEN0193). In 2018 4th International Conference on Science and Technology (ICST) (pp. 1-6). IEEE. https://doi.org/10.1109/ICSTC.2018.8528624 DOI: https://doi.org/10.1109/ICSTC.2018.8528624

Obrenovic, Ž., Starcevic, D., & Jovanov, E. (2006). Virtual Instrumentation. Wiley Encyclopedia of Biomedical Engineering, Wiley. https://obren.io/papers/virtualinstrumentation.pdf DOI: https://doi.org/10.1002/9780471740360.ebs1265

Saravanakumar, G., Wahidabanu, R. S. D., & Nayak, C. G. (2009). Performance analysis of various Smith predictors for integrating processes with longer dead-time. International Journal of Automation and Control, 3(2-3), 248-263. https://doi.org/10.1504/IJAAC.2009.025245 DOI: https://doi.org/10.1504/IJAAC.2009.025245

Uribe Martínez, J. M., Quintero Rodríguez, L. J., Tirado-Mejía, L., & Ibargüen, F. J. (2014). Acondicionamiento y digitalización de la señal de un LVDT para la medición del perfil de una superficie sólida: Acondicionamiento y Digitalización de un LVDT. Revista De Investigaciones Universidad Del Quindío, 25(1), 113–119. https://doi.org/10.33975/riuq.vol25n1.160 DOI: https://doi.org/10.33975/riuq.vol25n1.160

Van Rossum, G., & Drake Jr, F. L. (1995). Python reference manual. Amsterdam: Centrum voor 354 Wiskunde & Informatica.

Zetina, A., y Zetina, Á. (1999). Electrónica básica. Editorial Limusa.

Zhmud, V. A., Kondratiev, N. O., Kuznetsov, K. A., Trubin, V. G., & Dimitrov, L. V. (2018). Application of ultrasonic sensor for measuring distances in robotics. In Journal of Physics: Conference Series (Vol. 1015, No. 3, p. 032189). IOP Publishing. https://doi.org/10.1088/1742-6596/1015/3/032189 DOI: https://doi.org/10.1088/1742-6596/1015/3/032189

Downloads

Pubblicato

2025-02-05

Come citare

Contreras-Ferreyra, D. U., Martínez-Rojas, A., Pastor-Gómez, N., & Chávez-Negrete, C. (2025). Low-cost virtual instrumentation applied to geotechnical testing. European Public & Social Innovation Review, 10, 1–17. https://doi.org/10.31637/epsir-2025-1234

Fascicolo

Sezione

Innovación