Low-cost virtual instrumentation applied to geotechnical testing
DOI:
https://doi.org/10.31637/epsir-2025-1234Palabras clave:
Instrumentation, Geotechnics, Arduino, Sensors, Low-cost, Sampling, Innovation, Development, Calibration, PrecisionResumen
Introduction: In many of the current geotechnical tests, there is a need to improve data acquisition protocols, in addition to optimizing test procedures. The present work proposes the evaluation of 3 convetional sensors in geotechnical tests. Methodology: The devices used were an S3C DC-DC linear variable differential transformer, the HC-SR04 ultrasonic distance sensor, and the SKU:SEN0193 capacitive soil moisture sensor. The general methodology consisted of the development of the communication protocol, interface, and display of readings for each device. Subsequently, the calibration and precision level of each sensor was obtained. Results: The precision and reliability of the sensors were expressed according to the linear fit, obtaining R2 correlation values for all equipment. Discussion: The implemented systems allowed the detection of significant changes or trends in the behavior of the materials, obtaining satisfactory performances in most of the sensors, except for the moisture sensor SKU:SEN0193, which registered low precision. Conclusions: The use of sensors offers an alternative to improve some of the typical geotechnical tests. However, it is important to mention that a particular calibration must be carried out for each sensor to be used.
Descargas
Citas
ASTM D2435 M-11. (2020). Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. United States: American Society for Testing and Materials. https://doi.org/10.1520/D2435_D2435M-11R20 DOI: https://doi.org/10.1520/D2435_D2435M-11R20
ASTM D2216. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. PA, United States: American Society for Testing and Materials. https://doi.org/10.1520/D2216-19 DOI: https://doi.org/10.1520/D2216-19
ASTM D698. (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). PA, United States: American Society for Testing and Materials. https://doi.org/10.1520/D0698-12R21 DOI: https://doi.org/10.1520/D0698-12R21
ASTM C-1701. (2023). Standard test method for infiltration rate of in place pervious concrete. United States: American Society for Testing and Materials. https://doi.org/10.1520/C1701_C1701M-17AR23 DOI: https://doi.org/10.1520/C1701_C1701M-17AR23
Cooley, L. A. (1999). Permeability of superpave mixtures: evaluation of field permeameters. Auburn, AL: National Center for Asphalt Technology (NCAT), Report 99-1. https://rosap.ntl.bts.gov/view/dot/13975
Das, B. M. (2009). Principles of Geotechnical Engineering. Cengage Learning.
Ekblad, J. and Isacsson, U. (2006). Influence of water on resilient properties of coarse granular materials. Road Materials and Pavement Design, 7(3), 369–404. https://doi.org/10.1080/14680629.2006.9690043 DOI: https://doi.org/10.3166/rmpd.7.369-404
Head, K. H., & Epps, R. J. (2011). Manual of Soil Laboratory Testing, Volume 2: Permeability, Shear Strength and Compressibility tests. (3rd Edition), Whittles Publishing, Dunbeath, UK.
Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (1981). An introduction to geotechnical engineering, 733. Englewood Cliffs: Prentice-Hall.
Honeywell. (2009). Model S3C DC-DC. Miniature Displacement Transducer. 008757-2-EN IL50 GLO.
Kireš, M. (2006). Mariotte bottle with side openings. The Physics Teacher, 44(6), 388-389. https://acortar.link/nlbq18 DOI: https://doi.org/10.1119/1.2336147
Kulmány, I. M., Bede-Fazekas, Á., Beslin, A., Giczi, Z., Milics, G., Kovács, B., Kovácd, M., Ambrus, B., Bede, L., & Vona, V. (2022). Calibration of an Arduino-based low-cost capacitive soil moisture sensor for smart agriculture. Journal of Hydrology and Hydromechanics, 70(3), 330-340. https://doi.org/10.2478/johh-2022-0014 DOI: https://doi.org/10.2478/johh-2022-0014
Motahhir, S., Chalh, A., El Ghzizal, A., Sebti, S., & Derouich, A. (2017). Modeling of photovoltaic panel by using proteus. Journal of Engineering Science and Technology Review, 10, 8-13. https://doi.org/10.25103/jestr.102.02 DOI: https://doi.org/10.25103/jestr.102.02
Muzdrikah, F. S., Nuha, M. S., & Rizqi, F. A. (2018). Calibration of capacitive soil moisture sensor (SKU: SEN0193). In 2018 4th International Conference on Science and Technology (ICST) (pp. 1-6). IEEE. https://doi.org/10.1109/ICSTC.2018.8528624 DOI: https://doi.org/10.1109/ICSTC.2018.8528624
Obrenovic, Ž., Starcevic, D., & Jovanov, E. (2006). Virtual Instrumentation. Wiley Encyclopedia of Biomedical Engineering, Wiley. https://obren.io/papers/virtualinstrumentation.pdf DOI: https://doi.org/10.1002/9780471740360.ebs1265
Saravanakumar, G., Wahidabanu, R. S. D., & Nayak, C. G. (2009). Performance analysis of various Smith predictors for integrating processes with longer dead-time. International Journal of Automation and Control, 3(2-3), 248-263. https://doi.org/10.1504/IJAAC.2009.025245 DOI: https://doi.org/10.1504/IJAAC.2009.025245
Uribe Martínez, J. M., Quintero Rodríguez, L. J., Tirado-Mejía, L., & Ibargüen, F. J. (2014). Acondicionamiento y digitalización de la señal de un LVDT para la medición del perfil de una superficie sólida: Acondicionamiento y Digitalización de un LVDT. Revista De Investigaciones Universidad Del Quindío, 25(1), 113–119. https://doi.org/10.33975/riuq.vol25n1.160 DOI: https://doi.org/10.33975/riuq.vol25n1.160
Van Rossum, G., & Drake Jr, F. L. (1995). Python reference manual. Amsterdam: Centrum voor 354 Wiskunde & Informatica.
Zetina, A., y Zetina, Á. (1999). Electrónica básica. Editorial Limusa.
Zhmud, V. A., Kondratiev, N. O., Kuznetsov, K. A., Trubin, V. G., & Dimitrov, L. V. (2018). Application of ultrasonic sensor for measuring distances in robotics. In Journal of Physics: Conference Series (Vol. 1015, No. 3, p. 032189). IOP Publishing. https://doi.org/10.1088/1742-6596/1015/3/032189 DOI: https://doi.org/10.1088/1742-6596/1015/3/032189
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Dante Uriel Contreras-Ferreyra, Alondra Martínez-Rojas, Nelio Pastor-Gómez, Carlos Chávez-Negrete

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).