PRISMA Review on the implementation of Machine Learning in education: Social challenges and opportunities in shaping the citizens of tomorrow

Authors

DOI:

https://doi.org/10.31637/epsir-2026-1620

Keywords:

Artifical Intelligence, Machine Learning, Chatbot, Education, ChatGPT, Technology, Teacher training, Schoolar AI

Abstract

Introduction: The boundaries between humanity and artificial intelligence are becoming blurred, posing significant challenges in the field of education. Although institutions are showing interest in incorporating technologies such as ChatGPT, debates persist about their impact on the development of critical citizens and future leaders. Methodology: This systematic review, guided by the PRISMA method, analyses studies on the use of AI tools in school contexts, combining qualitative approaches to assess their pedagogical relevance and quantitative approaches to identify publication trends. Results: While much research focuses on scientific disciplines where AI is already integrated, the findings reveal that the educational field still faces difficulties in adapting to these technologies, which could exacerbate existing inequalities. Discussion: The incorporation of AI in education requires strategies that consider not only the technological dimension, but also the social, ethical, and pedagogical factors that influence its effective implementation. Conclusions: There is a need to advance research with sociological and educational approaches that enable the design of effective policies and practices for integrating artificial intelligence into the school system, training critical, ethical and competent students in an increasingly digitalised society.

Downloads

Download data is not yet available.

Author Biographies

Manuel Reina-Parrado, Universidad de Sevilla

PhD candidate in education at the University of Seville. Master's degree in Management and Quality Assessment of Training Institutions. Expert in technology and its educational use, specialising in the application of AI in schools.

Pedro Román-Graván, Universidad de Sevilla

Doctor of Education at the University of Seville. Senior lecturer in the Department of Teaching and Educational Organisation (DOE) at the FCCE (US). Research topic: educational technology. GID research group.

Carlos Hervás-Gómez, Universidad de Sevilla

Doctor of Education at the University of Seville. Senior lecturer in the Department of Teaching and Educational Organisation (DOE) at the FCCE (US). Research topic: educational technology. GID research group.

References

Alonso-Arévalo, J. (2015). Zotero: reference managers: software for the management and maintenance of bibliographic references in research works. Salamanca: Ediciones del Universo. https://acortar.link/bBC9ZT

Bailey, D. (2019). Chatbots as conversational agents in the context of language learning. En Proceedings of the Fourth Industrial Revolution and Education (pp. 27-29). Dajeon, Korea.

Barsky, E. (2010). Mendeley. Issues in Science and Technology Librarianship, 62. https://doi.org/10.29173/istl2541 DOI: https://doi.org/10.29173/istl2541

Billingsley, B., Heyes, J. M., Lesworth, T. y Sarzi, M. (2023). Can a robot be a scientist? Developing students' epistemic insight through a lesson exploring the role of human creativity in astronomy. Phys. Educ, 58. DOI: https://doi.org/10.1088/1361-6552/ac9d19

Biurrun, A. (2023, March 31). Italy temporarily bans ChatGPT artificial intelligence. The reason.

Chang, C. Y., Hwang, G. J. y Gau, M. L. (2022). Promoting students' learning achievement and self-efficacy: A mobile chatbot approach for nursing training. British Journal of Educational Technology, 53(1), 171-188. https://doi.org/10.1111/bjet.13158 DOI: https://doi.org/10.1111/bjet.13158

Chatterjee, S. y Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: a quantitative analysis using structural equation modelling. Education and Information Technologies, 25(5), 3443-3463. https://doi.org/10.1007/s10639-020-10159-7 DOI: https://doi.org/10.1007/s10639-020-10159-7

Chong, J. V. y Curtis, C. J. (2020). Perspectives on Aied Biola university perspectives on Artificial Intelligence in education: a study of public elementary school teachers. [Doctoral dissertation, BIOLA University]. https://acortar.link/lOzYad

Chung, D., Jeong, P., Kwon, D. y Han, H. (2023). Technology acceptance prediction of robo-advisors by machine learning. Intelligent Systems with Applications, 18 https://doi.org/10.1016/j.iswa.2023.200197 DOI: https://doi.org/10.1016/j.iswa.2023.200197

Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M. y Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), 2405-8440. https://doi.org/10.1016/j.heliyon.2020.e04081 DOI: https://doi.org/10.1016/j.heliyon.2020.e04081

Cuatrecasas-Monforte, C. (2022). Artificial Intelligence in the Spanish criminal investigation process: possible benefits and potential risks. [Doctoral Thesis, Universitat Ramon Llull]. http://hdl.handle.net/10803/675100

Druzhinina, O. V., Karpacheva, I. A., Masina, O. N. y Petrov, A. A. (2021). Development of an Integrated Complex of Knowledge Base and Tools of Expert Systems for Assessing Knowledge of Students in Mathematics within the Framework of a Hybrid Intelligent Learning Environment. International Journal of Education and Information Technologies, 15, 122-129. https://doi.org/10.46300/9109.2021.15.12 DOI: https://doi.org/10.46300/9109.2021.15.12

Garcia-Corretjer, M. A. (2022). On the Relationship between People, Objects, & Interactive Technologies: Transforming Digital & Physical experiences through the process of Realizing Empathy. [Doctoral dissertation, Universitat Ramon Llull]. http://hdl.handle.net/10803/675718

Gilson, A., Safranek, C. W., Huang, T., Socrates, V., Chi, L., Taylor, R. A. y Chartash, D. (2023). How does ChatGPT perform on the United States medical licensing examination? the implications of large language models for medical education and knowledge assessment. JMIR Medical Education, 9. https://doi.org/10.2196/45312 DOI: https://doi.org/10.2196/45312

Grunhut, J., Marques, O. y Wyatt, A. T. M. (2022). Needs, Challenges, and Applications of Artificial Intelligence in Medical Education Curriculum. JMIR Medical Education, 8(2). https://doi.org/10.2196/35587 DOI: https://doi.org/10.2196/35587

Harati H, Sujo-Montes L, Tu C-H, Armfield SJW, Yen C-J (2021). Assessment and Learning in Knowledge Spaces (ALEKS) Adaptive System Impact on Students' Perception and Self-Regulated Learning Skills. Education Sciences, 11(10), 603. https://doi.org/10.3390/educsci11100603 DOI: https://doi.org/10.3390/educsci11100603

Hoosain, M. S., Paul, B. S. y Ramakrishna, S. (2020). The impact of 4ir digital technologies and circular thinking on the united nations sustainable development goals. Sustainability (Switzerland), 12(23), 1-16. https://doi.org/10.3390/su122310143 DOI: https://doi.org/10.3390/su122310143

How, M. L. y Hung, W. L. D. (2019). Educing AI-thinking in science, technology, engineering, arts, and mathematics (STEAM) education. Education Sciences, 9(3). https://doi.org/10.3390/educsci9030184 DOI: https://doi.org/10.3390/educsci9030184

Hutton, B., Catala-Lopez, F. y Moher, D. (2016). The PRISMA statement extension for systematic reviews incorporating network meta-analysis: PRISMA-NMA. Med Clin (Barc), 147(6), 262-266. DOI: https://doi.org/10.1016/j.medcle.2016.10.003

Jara, I. y Ochoa, J. M. (2020). Uses and effects of artificial intelligence in education. Inter-American Development Bank. http://dx.doi.org/10.18235/0002380 DOI: https://doi.org/10.18235/0002380

Jeong, G. H. (2020). Artificial intelligence, machine learning, and deep learning in women's health nursing. Korean Journal of Women Health Nursing, 26(1), 5–9. https://doi.org/10.4069/kjwhn.2020.03.11 DOI: https://doi.org/10.4069/kjwhn.2020.03.11

Jokhan, A., Chand, A. A., Singh, V. y Mamun, K. A. (2022). Increased Digital Resource Consumption in Higher Educational Institutions and the Artificial Intelligence Role in Informing Decisions Related to Student Performance. Sustainability (Switzerland), 14(4). https://doi.org/10.3390/su14042377 DOI: https://doi.org/10.3390/su14042377

Kadhim, M. K. y Hassan, A. K. (2020). Towards Intelligent E-Learning Systems: A Hybrid Model for Predicatingthe Learning Continuity in Iraqi Higher Education. Webology, 17(2), 172-188. https://doi.org/10.14704/WEB/V17I2/WEB17023 DOI: https://doi.org/10.14704/WEB/V17I2/WEB17023

Kanglang, L. (2021). Artificial Intelligence (AI) and Translation Teaching: A Critical Perspective on the Transformation of Education. International Journal of Educational Sciences, 33(1-3). https://doi.org/10.31901/24566322.2021/33.1-3.1159 DOI: https://doi.org/10.31901/24566322.2021/33.1-3.1159

Khan, I., Ahmad, A. R., Jabeur, N. y Mahdi, M. N. (2021). An artificial intelligence approach to monitor student performance and devise preventive measures. Smart Learning Environments, 8(1). https://doi.org/10.1186/s40561-021-00161-y DOI: https://doi.org/10.1186/s40561-021-00161-y

Kubsch, M., Czinczel, B., Lossjew, J., Wyrwich, T., Bednorz, D., Bernholt, S., Fiedler, D., Strauß, S., Cress, U., Drachsler, H., Neumann, K. y Rummel, N. (2022). Toward learning progression analytics — Developing learning environments for the automated analysis of learning using evidence centered design. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.981910 DOI: https://doi.org/10.3389/feduc.2022.981910

Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M. D., Păun, D. y Mihoreanu, L. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. Sustainability (Switzerland), 13(18). https://doi.org/10.3390/su131810424 DOI: https://doi.org/10.3390/su131810424

Lampos, V., Mintz, J. y Qu, X. (2021). An artificial intelligence approach for selecting effective teacher communication strategies in autism education. NPJ Science of Learning, 6(1). https://doi.org/10.1038/s41539-021-00102-x DOI: https://doi.org/10.1038/s41539-021-00102-x

Lee, D. y Yeo, S. (2022). Developing an AI-based chatbot for practicing responsive teaching in mathematics. Computers and Education, 191. https://doi.org/10.1016/j.compedu.2022.104646 DOI: https://doi.org/10.1016/j.compedu.2022.104646

Li, L. (2022). The Impact of Artificial Intelligence Painting on Contemporary Art From Disco Diffusion's Painting Creation Experiment. Proceedings - 2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning, FAIML 2022, 52-56. https://doi.org/10.1109/FAIML57028.2022.00020 DOI: https://doi.org/10.1109/FAIML57028.2022.00020

Li, J., Wang, X., Ahmad, S., Huang, X. y Khan, Y. A. (2023). Optimization of investment strategies through machine learning, Heliyon, 9(5), 2405-8440. https://doi.org/10.1016/j.heliyon.2023.e16155 DOI: https://doi.org/10.1016/j.heliyon.2023.e16155

Luckin, R. y Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences-driven approach. British Journal of Educational Technology, 50(6),

2824-2838. https://doi.org/10.1111/bjet.12861 DOI: https://doi.org/10.1111/bjet.12861

Marques, L. S., Gresse von Wangenheim, C. y Hauck, J. C. R. (2020). Teaching machine learning in school: A systematic mapping of the state of the art. Informatics in Education, 19(2), 283-321. https://doi.org/10.15388/INFEDU.2020.14 DOI: https://doi.org/10.15388/infedu.2020.14

Mengmeng, Z., Xiantong, Y. y Xinghua, W. (2019). Construction of STEAM Curriculum Model and Case Design in Kindergarten. American Journal of Educational Research, 7(7),

485-490. https://doi.org/10.12691/education-7-7-8 DOI: https://doi.org/10.12691/education-7-7-8

Muniasamy, A. y Alasiry, A. (2020). Deep learning: The impact on future eLearning. International Journal of Emerging Technologies in Learning, 15(1), 188-199. https://doi.org/10.3991/IJET.V15I01.11435 DOI: https://doi.org/10.3991/ijet.v15i01.11435

Murphy-Kelly, S. (2023, March 29). Elon Musk and other tech leaders call for pause in 'out of control' AI race. CNN Business.

Nicoletti, M. C. y Oliveira, O. L. (2020). A Machine Learning-Based Computational System Proposal Aiming at Higher Education Dropout Prediction. Higher Education Studies, 10(4), 12. https://doi.org/10.5539/hes.v10n4p12 DOI: https://doi.org/10.5539/hes.v10n4p12

Nuankaew, P. (2022). Self-Regulated Learning Model in Educational Data Mining. International Journal of Emerging Technologies in Learning, 17(17), 4-27. https://doi.org/10.3991/ijet.v17i17.23623 DOI: https://doi.org/10.3991/ijet.v17i17.23623

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P. y Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://www.bmj.com/content/372/bmj.n71 DOI: https://doi.org/10.31222/osf.io/v7gm2

Page, M. J. y Moher, D. (2017). Evaluations of the uptake and impact of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement and extensions: a scoping review. Systematic reviews, 6(1), 1-14.

https://doi.org/10.1186/s13643-017-0663-8 DOI: https://doi.org/10.1186/s13643-017-0663-8

Page, M. J., Moher, D. y McKenzie, J. E. (2022). Introduction to PRISMA 2020 and implications for research synthesis methodologists. In Research Synthesis Methods, 13(2), 156-163. https://doi.org/10.1002/jrsm.1535 DOI: https://doi.org/10.1002/jrsm.1535

Palasundram, K., Sharef, N. M., Nasharuddin, N. A., Kasmiran, K. A. y Azman, A. (2019). Sequence to sequence model performance for education chatbot. International Journal of Emerging Technologies in Learning, 14(24), 56-68. https://doi.org/10.3991/ijet.v14i24.12187 DOI: https://doi.org/10.3991/ijet.v14i24.12187

Peramunugamage, A., Ratnayake, U. W. y Karunanayaka, S. P. (2022). Systematic review on mobile collaborative learning for engineering education. Journal of Computers in Education. https://doi.org/10.1007/s40692-022-00223-1 DOI: https://doi.org/10.1007/s40692-022-00223-1

Pikhart, M. y Klímová, B. (2020). Elearning 4.0 as a sustainability strategy for generation z language learners: Applied linguistics of second language acquisition in younger adults. Societies, 10(2). https://doi.org/10.3390/soc10020038 DOI: https://doi.org/10.3390/soc10020038

Prendes-Espinosa, M. P. y Cerdán-Cartagena, F. (2021). Advanced technologies to face the challenge of educational innovation. ITEN-Revista Iberoamericana de Educacion a Distancia, 24(1), 35-53. https://doi.org/10.5944/ried.24.1.28415 DOI: https://doi.org/10.5944/ried.24.1.28415

Pu, S., Ahmad, N. A., Khambari, M. N. M. y Yap, N. K. (2021). Identification and analysis of core topics in educational artificial intelligence research: A bibliometric analysis. Cypriot Journal of Educational Sciences, 16(3), 995-1009. https://doi.org/10.18844/CJES.V16I3.5782 DOI: https://doi.org/10.18844/cjes.v16i3.5782

Rodríguez-García, J. D., Moreno-León, J., Román-González, M. y Robles, G. (2020). LearningML: A tool to foster computational thinking skills through practical artificial intelligence projects. Journal of Distance Education, 20(63). https://doi.org/10.6018/RED.410121 DOI: https://doi.org/10.6018/red.410121

Ruiperez-Valiente, J. A., Munoz-Merino, P. J., Alexandron, G. y Pritchard, D. E. (2019). Using Machine Learning to Detect “Multiple-Account” Cheating and Analyze the Influence of Student and Problem Features. IEEE Transactions on Learning Technologies, 12(1),

112-122. https://doi.org/10.1109/TLT.2017.2784420 DOI: https://doi.org/10.1109/TLT.2017.2784420

Salas-Rueda, R. A. y Salas-Rueda, R. D. (2020). Impact of the web application for the educational process on the compound interest considering data science. Turkish Online Journal of Distance Education-TOJDE. DOI: https://doi.org/10.17718/tojde.762030

Sharma, K., Papamitsiou, Z. y Giannakos, M. (2019). Building pipelines for educational data using AI and multimodal analytics: A “grey-box” approach. British Journal of Educational Technology, 50(6), 3004-3031. https://doi.org/10.1111/bjet.12854 DOI: https://doi.org/10.1111/bjet.12854

Soysal, D., Bani-Yaghoub, M. y Riggers-Piehl, T. A. (2022). A Machine Learning Approach to Evaluate Variables of Math Anxiety in STEM Students. Pedagogical Research, 7(2), em0125. https://doi.org/10.29333/pr/11978 DOI: https://doi.org/10.29333/pr/11978

Stadelmann, T., Keuzenkamp, J., Grabner, H. y Würsch, C. (2021). The ai-atlas: Didactics for teaching ai and machine learning on-site, online, and hybrid. Education Sciences, 11(7). https://doi.org/10.3390/educsci11070318 DOI: https://doi.org/10.3390/educsci11070318

Stokel-Walker, C. (2022). AI bot ChatGPT writes smart essays — should academics worry? Nature. https://doi.org/10.1038/d41586-022-04397-7 DOI: https://doi.org/10.1038/d41586-022-04397-7

Su, J., Zhong, Y. y Ng, D. T. K. (2022). A meta-review of literature on educational approaches for teaching AI at the K-12 levels in the Asia-Pacific region. Computers and Education: Artificial Intelligence, 3, 100065. https://doi.org/10.1016/j.caeai.2022.100065 DOI: https://doi.org/10.1016/j.caeai.2022.100065

Talan, T. (2021). Artificial Intelligence in Education: A Bibliometric Study. International Journal of Research in Education and Science, 822-837. https://doi.org/10.46328/ijres.2409 DOI: https://doi.org/10.46328/ijres.2409

Thompson, A., Gallacher, A. y Howarth, M. (2018). Stimulating task interest: human partners or chatbots? In Future-proof CALL: language learning as exploration and encounters. EUROCALL 302–306. https://doi.org/10.14705/rpnet.2018.26.854 DOI: https://doi.org/10.14705/rpnet.2018.26.854

Urrútia, G. y Bonfill, X. (2010). PRISMA declaration: A proposal to improve the publication of systematic reviews and meta-analyses. Clinical Medicine, 135(11), 507-511. https://doi.org/10.1016/j.medcli.2010.01.015 DOI: https://doi.org/10.1016/j.medcli.2010.01.015

Vázquez-Cano, E., Mengual-Andrés, S. y López-Meneses, E. (2021). Chatbot to improve learning punctuation in Spanish and to enhance open and flexible learning environments. International Journal of Educational Technology in Higher Education, 18(1). https://doi.org/10.1186/s41239-021-00269-8 DOI: https://doi.org/10.1186/s41239-021-00269-8

Vijayakumar, R., Bhuvaneshwari, B., Adith, S. y Deepika, M. (2019). AI Based Student Bot for Academic Information System using Machine Learning. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 590-596. https://doi.org/10.32628/cseit1952171 DOI: https://doi.org/10.32628/CSEIT1952171

Vir-Singh, S. y Kant-Hiran, K. (2022). The Impact of AI on Teaching and Learning in Higher Education Technology. Journal of Higher Education Theory and Practice, 22(13). DOI: https://doi.org/10.33423/jhetp.v22i13.5514

Winkler, R. y Söllner, M. (2018): Unleashing the Potential of Chatbots in Education: A State-of-the-Art Analysis. Academy of Management Annual Meeting (AOM). https://www.alexandria.unisg.ch/publications/254848 DOI: https://doi.org/10.5465/AMBPP.2018.15903abstract

Zammit, M., Voulgari, I., Liapis, A. y Yannakakis, G. N. (2022). Learn to Machine Learn via Games in the Classroom. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.913530 DOI: https://doi.org/10.3389/feduc.2022.913530

Zawacki-Richter, O., Marín, V. I., Bond, M. y Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? In International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0

Published

2025-09-19

How to Cite

Reina-Parrado, M., Román-Graván, P., & Hervás-Gómez, C. (2025). PRISMA Review on the implementation of Machine Learning in education: Social challenges and opportunities in shaping the citizens of tomorrow. European Public & Social Innovation Review, 11, 1–26. https://doi.org/10.31637/epsir-2026-1620

Issue

Section

Cover articles