Explorando el impacto de la reflexión cognitiva y la calibración sobre tareas creativas científicas en la educación secundaria
DOI:
https://doi.org/10.31637/epsir-2026-1991Palabras clave:
creatividad científica, creatividad, metacognición, calibración, reflexión cognitiva, nivel académico, género, educación secundariaResumen
Introducción: Dada la relevancia que la creatividad tiene en la educación y sus vínculos con las estrategias metacognitivas, los objetivos de esta investigación se centraron en la evaluación de la creatividad científica convergente (CCC) y en la influencia de la calibración, reflexión cognitiva, nivel académico y género sobre ella. Metodología: Se realizó una investigación cuantitativa transversal ex post facto. Participaron 153 estudiantes (86 chicos y 67 chicas) de tres cursos diferentes de la educación secundaria española. Se administraron tres pruebas, una de CCC de dos ítems, una de calibración de dos ítems y una de reflexión cognitiva de ocho ítems. Resultados y discusión: Las puntuaciones de CCC fueron bajas. Esta CCC sólo se correlacionó de forma significativa (y positiva) con calibración y reflexión cognitiva. Un análisis de regresión señaló a la calibración como la única variable predictiva significativa de la CCC. Un análisis de mediación mostró que la calibración actuó como mediadora entre reflexión cognitiva y CCC. Conclusiones: Estos resultados sugieren que: a) la formación académica en secundaria tuvo escaso efecto sobre la CCC; b) la variable que más influyó en la CCC fue la calibración; y c) la reflexión cognitiva tuvo un efecto indirecto significativo sobre la CCC.
Descargas
Citas
An, D. y Runco, M. A. (2016). General and domain-specific contributions to creative ideation and creative performance. Europe's Journal of Psychology, 12(4), 523-532. https://doi.org/10.5964/ejop.v12i4.1132 DOI: https://doi.org/10.5964/ejop.v12i4.1132
Aktamis, H. y Ergin, Ö. (2008). The effect of scientific process skills education on students' scientific creativity, science attitudes and academic achievements. Asia-Pacific Forum on Science Learning and Teaching, 9(1), Article 4. https://www.eduhk.hk/apfslt/
Ardura, D. y Galán, A. (2020). Calibración del resultado de una prueba escrita en estudiantes de ciencias de secundaria: el efecto del sexo. Revista de Investigación Educativa, 38(2), 329-344. https://doi.org/10.6018/rie.384031 DOI: https://doi.org/10.6018/rie.384031
Ayas, M. B. y Sak, U. (2014). Objective measure of scientific creativity: Psychometric validity of the creative scientific ability test. Thinking Skills and Creativity, 13, 195-205. https://doi.org/10.1016/j.tsc.2014.06.001 DOI: https://doi.org/10.1016/j.tsc.2014.06.001
Bermejo, M. R., Ruiz-Melero, M. J., Esparza, J., Ferrando, M. y Pons, R. (2016). A new measurement of scientific creativity: The study of its psychometric properties. Anales de Psicología, 32(3), 652-661. http://dx.doi.org/10.6018/analesps.32.3.259411 DOI: https://doi.org/10.6018/analesps.32.3.259411
Bernal, A., Esparza J., Ruiz, M. J., Ferrando, M. y Sainz, M. (2017). The specificity of creativity: Figurative and scientific. Electronic Journal of Research in Educational Psychology, 15(3), 574-597. https://doi.org/10.14204/ejrep.43.16094 DOI: https://doi.org/10.14204/ejrep.43.16094
Clapham, M. M. (1997). Ideational skills training: A key element in creativity training programs. Creativity Research Journal, 10(1), 33-44. https://doi.org/10.1207/s15326934crj1001_4 DOI: https://doi.org/10.1207/s15326934crj1001_4
Corgnet, B., Espín, A. M. y Hernán-González, R. (2016). Creativity and cognitive skills among millennials: Thinking too much and creating too little. Frontiers in Psychology, 7, 1626. https://doi.org/10.3389/fpsyg.2016.01626 DOI: https://doi.org/10.3389/fpsyg.2016.01626
De Bruin, A. B. H., Kok, E. M., Lobbestael, J. y de Grip, A. (2017). The impact of an online tool for monitoring and regulating learning at university: overconfidence, learning strategy, and personality. Metacognition and Learning, 12(1), 21-43. https://doi.org/10.1007/s11409-016-9159-5 DOI: https://doi.org/10.1007/s11409-016-9159-5
De Chantal, P. L. y Markovits, H. (2022). Reasoning outside the box: Divergent thinking is related to logical reasoning. Cognition, 224, 105064. https://doi.org/10.1016/j.cognition.2022.105064 DOI: https://doi.org/10.1016/j.cognition.2022.105064
DeHaan, R. L. (2009). Teaching creativity and inventive problem solving in science. CBE—Life Sciences Education, 8(3), 172-181. https://doi.org/10.1187/cbe.08-12-0081 DOI: https://doi.org/10.1187/cbe.08-12-0081
Department for Education. (2013). National curriculum in England: Science programmes of study. https://acortar.link/SgWCHK
Doz, D. y Sliško, J. (2024). The cognitive reflection test and students’ achievements in mathematics and physics. European Journal of Science and Mathematics Education, 12(1), 85-96. https://doi.org/10.30935/scimath/13832 DOI: https://doi.org/10.30935/scimath/13832
Dunlosky, J. y Metcalfe, J. (2008). Metacognition. SAGE Publications
Evans, J. S. B. y Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing debate. Perspectives on Psychological Science, 8(3), 223-241. https://doi.org/10.1177/1745691612460685 DOI: https://doi.org/10.1177/1745691612460685
Eysenck, H. (2003). Creativity, personality, and the convergent-divergent continuum. In M. A. Runco (Ed.), Critical Creativity Processes (pp. 95-114). Hampton Press.
Fernández-Vilanova, J., Solaz-Portolés, J. J. y Sanjosé-López, V. (2024). Impacto de la creatividad e identidad científica sobre las destrezas de razonamiento científico de estudiantes de Educación Secundaria. Revista de Estilos de Aprendizaje, 17(34), 1-13. https://doi.org/10.55777/rea.v17i34.5918 DOI: https://doi.org/10.55777/rea.v17i34.5918
Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19(4), 25-42. https://doi.org/10.1257/089533005775196732 DOI: https://doi.org/10.1257/089533005775196732
García, T., Rodríguez, C., González-Castro, P., González-Pineda, J. A. y Torrance, M. (2016). Elementary students’ metacognitive processes and post-performance calibration on mathematical problem-solving tasks. Metacognition and Learning, 11, 139-170. https://doi.org/10.1007/s11409-015-9139-1 DOI: https://doi.org/10.1007/s11409-015-9139-1
Gómez-Chacón, I. M., García-Madruga, J. A., Vila, J. Ó., Elosúa, M. R. y Rodríguez, R. (2014). The dual processes hypothesis in mathematics performance: Beliefs, cognitive reflection, working memory and reasoning. Learning and Individual Differences, 29, 67-73. https://doi.org/10.1016/j.lindif.2013.10.001 DOI: https://doi.org/10.1016/j.lindif.2013.10.001
Hacker, D.J., Bol, L. y Bahbahani, K. (2008). Explaining calibration accuracy in classroom contexts: the effects of incentives, reflection, and explanatory style. Metacognition and Learning, 3, 101-121. https://doi.org/10.1007/s11409-008-9021-5 DOI: https://doi.org/10.1007/s11409-008-9021-5
Hennessey, B. A. y Amabile, T. M. (2010). Creativity. Annual Review of Psychology, 61(1), 569-598. https://doi.org/10.1146/annurev.psych.093008.100416 DOI: https://doi.org/10.1146/annurev.psych.093008.100416
Hijarro-Vercher, A., Solaz-Portolés, J. J. y Sanjosé, V. (2023). Creatividad, metacognición y autoeficacia en la detección de errores en problemas resueltos. Revista Fuentes, 25(3), 256-266. https://doi.org/10.12795/revistafuentes.2023.23050 DOI: https://doi.org/10.12795/revistafuentes.2023.23050
Hu, W., Wu, B., Jia, X., Yi, X., Duan, C., Meyer, W. y Kaufman, J. C. (2013). Increasing students' scientific creativity: The “learn to think” intervention program. The Journal of Creative Behavior, 47(1), 3-21. https://doi.org/10.1002/jocb.20 DOI: https://doi.org/10.1002/jocb.20
Jia, X., Li, W. y Cao, L. (2019). The role of metacognitive components in creative thinking. Frontiers in Psychology, 10, 2404. https://doi.org/10.3389/fpsyg.2019.02404 DOI: https://doi.org/10.3389/fpsyg.2019.02404
Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus, and Giroux.
Kahneman, D., y Frederick, S. (2005). A model of heuristic judgement. In J. H. Keith y R. G. Morrison (Eds.), Cambridge handbook of thinking and reasoning (pp. 267-293). Cambridge University Press.
Kind, P. M. y Kind, V. (2007). Creativity in science education: Perspectives and challenges for developing school science. Studies in Science Education, 43(1), 1-37. https://doi.org/10.1080/03057260708560225 DOI: https://doi.org/10.1080/03057260708560225
Kruger, J. y Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence led to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121-1134. https://doi.org/10.1037/0022-3514.77.6.1121 DOI: https://doi.org/10.1037//0022-3514.77.6.1121
Lebuda, I. y Benedek, M. (2023). A systematic framework of creative metacognition. Physics of Life Reviews, 46, 161-181. https://doi.org/10.1016/j.plrev.2023.07.002 DOI: https://doi.org/10.1016/j.plrev.2023.07.002
Lin, C., Hu, W., Adey, P. y Shen, J. (2003). The influence of CASE on scientific creativity. Research in Science Education, 33, 143-162. https://doi.org/10.1023/A:1025078600616 DOI: https://doi.org/10.1023/A:1025078600616
LOMLOE (2020). Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación.
https://www.boe.es/diario_boe/txt.php?id=BOE-A-2020-17264
Longo, C. (2010). Fostering Creativity or Teaching to the Test? Implications of State Testing on the Delivery of Science Instruction. The Clearing House, 83(2), 54-57. https://doi.org/10.1080/00098650903505399 DOI: https://doi.org/10.1080/00098650903505399
Meyer, A. A. y Lederman, N. G. (2013). Inventing creativity: An exploration of the pedagogy of ingenuity in science classrooms. School Science and Mathematics, 113(8), 400-409. https://onlinelibrary.wiley.com/doi/epdf/10.1111/ssm.12039 DOI: https://doi.org/10.1111/ssm.12039
Ministerio de Educación, Formación Profesional y Deporte (2023). PISA 2022. Marco conceptual de Pensamiento Creativo. Secretaria General Técnica del Ministerio. https://libreria.educacion.gobierno.es
NRC (National Research Council). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.
OECD. (2004). Innovation in the knowledge economy: Implications for education and learning. OECD Publications. DOI: https://doi.org/10.1787/9789264105621-en
OECD. (2008). Innovating to learn, learning to innovate. OECD. DOI: https://doi.org/10.1787/journal_dev-v9-2-en
Orkibi, H. (2021). Creative adaptability: Conceptual framework, measurement, and outcomes in times of crisis. Frontiers in Psychology, 11, 588172. https://doi.org/10.3389/fpsyg.2020.588172 DOI: https://doi.org/10.3389/fpsyg.2020.588172
Oskamp, S. (1965). Overconfidence in case-study judgments. The Journal of Consulting Psychology, 29, 261-265. https://doi.org/10.1037/h0022125 DOI: https://doi.org/10.1037/h0022125
Otero, I., Salgado, J. F. y Moscoso, S. (2022). Cognitive reflection, cognitive intelligence, and cognitive abilities: A meta-analysis. Intelligence, 90, 101614. https://doi.org/10.1016/j.intell.2021.101614 DOI: https://doi.org/10.1016/j.intell.2021.101614
Pesout, O. y Nietfeld, J. L. (2021). How creative am I? Examining judgments and predictors of creative performance. Thinking Skills and Creativity, 40, 100836. https://doi.org/10.1016/j.tsc.2021.100836 DOI: https://doi.org/10.1016/j.tsc.2021.100836
Preiss, D. D. (2022). Metacognition, mind wandering, and cognitive flexibility: Understanding creativity. Journal of Intelligence, 10(3), 69. https://doi.org/10.3390/jintelligence10030069 DOI: https://doi.org/10.3390/jintelligence10030069
Ramly, S. N. F., Ahmad, N. J. y Yakob, N. (2022). Development, validity, and reliability of chemistry scientific creativity test for pre-university students. International Journal of Science Education, 44(14), 1-16. https://doi.org/10.1080/09500693.2022.2116298 DOI: https://doi.org/10.1080/09500693.2022.2116298
Runco, M. A. y Jaeger, G. J. (2012). The Standard Definition of Creativity. Creativity Research Journal, 24(1), 92-96. https://doi.org/10.1080/10400419.2012.650092 DOI: https://doi.org/10.1080/10400419.2012.650092
Sáenz, C. y Bruno, G. N. (2018). Calibración, autoconcepto y competencia matemática. Avances de Investigación en Educación Matemática, 14, 1-14. https://doi.org/10.35763/aiem.v0i14.178 DOI: https://doi.org/10.35763/aiem.v0i14.178
Sawyer, R. K. (2021). The iterative and improvisational nature of the creative process. Journal of Creativity, 31, 100002. https://doi.org/10.1016/j.yjoc.2021.100002 DOI: https://doi.org/10.1016/j.yjoc.2021.100002
Siew, N. M., Chong, C. L. y Chin, K. O. (2014). Developing a scientific creativity test for fifth graders. Problems of Education in the 21st Century, 62, 109-123. https://doi.org/10.33225/pec/14.62.109 DOI: https://doi.org/10.33225/pec/14.62.109
Sternberg, R. J. (Ed.). (1999). Handbook of creativity. Cambridge University Press.
Sternberg, R. J., Todhunter, R. J., Litvak, A. y Sternberg, K. (2020). The relation of scientific creativity and evaluation of scientific impact to scientific reasoning and general intelligence. Journal of Intelligence, 8(2), 17. https://doi.org/10.3390/jintelligence8020017 DOI: https://doi.org/10.3390/jintelligence8020017
Toplak, M. E., West, R. F. y Stanovich, K. E. (2011). The Cognitive Reflection Test as a predictor of performance on heuristics-and-biases tasks. Memory & Cognition, 39, 1275-1289. https://doi.org/10.3758/s13421-011-0104-1 DOI: https://doi.org/10.3758/s13421-011-0104-1
Urban, M. y Urban, K. (2024). Do we need metacognition for creativity? A necessary condition analysis of creative metacognition. Psychology of Aesthetics, Creativity, and the Arts. Advance online publication. https://doi.org/10.1037/aca0000647 DOI: https://doi.org/10.1037/aca0000647
Yang, K. K., Hong, Z. R., Lee, L. y Lin, H. S. (2019). Exploring the significant predictors of convergent and divergent scientific creativities. Thinking Skills and Creativity, 31, 252-261. https://doi.org/10.1016/j.tsc.2019.01.002 DOI: https://doi.org/10.1016/j.tsc.2019.01.002
Yang, K. K., Lin, S. F., Hong, Z. R. y Lin, H. S. (2016). Exploring the assessment of and relationship between elementary students’ scientific creativity and science inquiry. Creativity Research Journal, 28(1), 16-23. https://doi.org/10.1080/10400419.2016.1125270 DOI: https://doi.org/10.1080/10400419.2016.1125270
Young, A. G. y Shtulman, A. (2020). Children’s cognitive reflection predicts conceptual understanding in science and mathematics. Psychological Science, 31(11), 1396-1408. https://doi.org/10.1177/0956797620954449 DOI: https://doi.org/10.1177/0956797620954449
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Mireia Cifre-Herrando, Joan Josep Solaz-Portolés, Vicente Sanjosé López

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).