Exploring the impact of cognitive reflection and calibration on scientific creative tasks in secondary education

Authors

DOI:

https://doi.org/10.31637/epsir-2026-1991

Keywords:

creativity, scientific creativity, metacognition, calibration, cognitive reflection, grade level, gender, secondary education

Abstract

Introduction: In accordance with the relevance that creativity has in education and its links with metacognitive strategies, the goals of this research focused on the assessment of convergent scientific creativity (CSC) and the analysis of the influence of calibration, cognitive reflection, grade level and gender on this creativity. Methodology: Quantitative ex post facto cross-sectional research was conducted. A total of 153 students (86 boys and 67 girls) from three different grades of Spanish secondary education (9th, 10th, and 11th grades) participated in this study. Three tests, a two-item CSC test, a two-item calibration test, and an eight-item cognitive reflection test, were administered to participants. Results and discussion: CSC scores were low. This CSC only correlated significantly (and positively) with calibration and cognitive reflection. A regression analysis pointed to calibration as the only significant predictor variable of CSC. A mediation analysis showed that calibration acted as a mediator between cognitive reflection and CSC. Conclusions: These results suggest that: a) academic training in secondary education had little effect on CSC; b) the variable that most influenced CSC was calibration; and c) cognitive reflection had a significant indirect effect on CSC.

Downloads

Download data is not yet available.

Author Biographies

Mireia Cifre-Herrando, Universitat Politècnica de València

Researcher with a PhD from the Polytechnic University of Valencia. She has completed a Master's Degree in Secondary Education Teaching. Member of the research team for five research projects. Co-author of ten articles in journals and eighteen papers at international conferences.

Joan Josep Solaz-Portolés, Universitat de València

Professor of Experimental Science Education at the University of Valencia (Spain). Member of the CDC/PCK research group at the University of Valencia. He has researched problem solving, cognitive and metacognitive variables in science learning, and teachers' didactic knowledge of content. His current lines of research are scientific creativity (PI in two research projects), scientific inquiry skills, and epistemologically unjustified beliefs in primary and secondary school students and teachers.

Vicente Sanjosé López, Universitat de València

Professor of Experimental Science Education at the University of Valencia (Spain). Member of the CDC/PCK research group at the University of Valencia. He specializes in science education and initial training for science teachers, particularly in comprehension, metacognition, and problem solving, as well as in the use of devices to observe mental processes during the performance of academic tasks.

References

An, D. y Runco, M. A. (2016). General and domain-specific contributions to creative ideation and creative performance. Europe's Journal of Psychology, 12(4), 523-532. https://doi.org/10.5964/ejop.v12i4.1132 DOI: https://doi.org/10.5964/ejop.v12i4.1132

Aktamis, H. y Ergin, Ö. (2008). The effect of scientific process skills education on students' scientific creativity, science attitudes and academic achievements. Asia-Pacific Forum on Science Learning and Teaching, 9(1), Article 4. https://www.eduhk.hk/apfslt/

Ardura, D. y Galán, A. (2020). Calibración del resultado de una prueba escrita en estudiantes de ciencias de secundaria: el efecto del sexo. Revista de Investigación Educativa, 38(2), 329-344. https://doi.org/10.6018/rie.384031 DOI: https://doi.org/10.6018/rie.384031

Ayas, M. B. y Sak, U. (2014). Objective measure of scientific creativity: Psychometric validity of the creative scientific ability test. Thinking Skills and Creativity, 13, 195-205. https://doi.org/10.1016/j.tsc.2014.06.001 DOI: https://doi.org/10.1016/j.tsc.2014.06.001

Bermejo, M. R., Ruiz-Melero, M. J., Esparza, J., Ferrando, M. y Pons, R. (2016). A new measurement of scientific creativity: The study of its psychometric properties. Anales de Psicología, 32(3), 652-661. http://dx.doi.org/10.6018/analesps.32.3.259411 DOI: https://doi.org/10.6018/analesps.32.3.259411

Bernal, A., Esparza J., Ruiz, M. J., Ferrando, M. y Sainz, M. (2017). The specificity of creativity: Figurative and scientific. Electronic Journal of Research in Educational Psychology, 15(3), 574-597. https://doi.org/10.14204/ejrep.43.16094 DOI: https://doi.org/10.14204/ejrep.43.16094

Clapham, M. M. (1997). Ideational skills training: A key element in creativity training programs. Creativity Research Journal, 10(1), 33-44. https://doi.org/10.1207/s15326934crj1001_4 DOI: https://doi.org/10.1207/s15326934crj1001_4

Corgnet, B., Espín, A. M. y Hernán-González, R. (2016). Creativity and cognitive skills among millennials: Thinking too much and creating too little. Frontiers in Psychology, 7, 1626. https://doi.org/10.3389/fpsyg.2016.01626 DOI: https://doi.org/10.3389/fpsyg.2016.01626

De Bruin, A. B. H., Kok, E. M., Lobbestael, J. y de Grip, A. (2017). The impact of an online tool for monitoring and regulating learning at university: overconfidence, learning strategy, and personality. Metacognition and Learning, 12(1), 21-43. https://doi.org/10.1007/s11409-016-9159-5 DOI: https://doi.org/10.1007/s11409-016-9159-5

De Chantal, P. L. y Markovits, H. (2022). Reasoning outside the box: Divergent thinking is related to logical reasoning. Cognition, 224, 105064. https://doi.org/10.1016/j.cognition.2022.105064 DOI: https://doi.org/10.1016/j.cognition.2022.105064

DeHaan, R. L. (2009). Teaching creativity and inventive problem solving in science. CBE—Life Sciences Education, 8(3), 172-181. https://doi.org/10.1187/cbe.08-12-0081 DOI: https://doi.org/10.1187/cbe.08-12-0081

Department for Education. (2013). National curriculum in England: Science programmes of study. https://acortar.link/SgWCHK

Doz, D. y Sliško, J. (2024). The cognitive reflection test and students’ achievements in mathematics and physics. European Journal of Science and Mathematics Education, 12(1), 85-96. https://doi.org/10.30935/scimath/13832 DOI: https://doi.org/10.30935/scimath/13832

Dunlosky, J. y Metcalfe, J. (2008). Metacognition. SAGE Publications

Evans, J. S. B. y Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing debate. Perspectives on Psychological Science, 8(3), 223-241. https://doi.org/10.1177/1745691612460685 DOI: https://doi.org/10.1177/1745691612460685

Eysenck, H. (2003). Creativity, personality, and the convergent-divergent continuum. In M. A. Runco (Ed.), Critical Creativity Processes (pp. 95-114). Hampton Press.

Fernández-Vilanova, J., Solaz-Portolés, J. J. y Sanjosé-López, V. (2024). Impacto de la creatividad e identidad científica sobre las destrezas de razonamiento científico de estudiantes de Educación Secundaria. Revista de Estilos de Aprendizaje, 17(34), 1-13. https://doi.org/10.55777/rea.v17i34.5918 DOI: https://doi.org/10.55777/rea.v17i34.5918

Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19(4), 25-42. https://doi.org/10.1257/089533005775196732 DOI: https://doi.org/10.1257/089533005775196732

García, T., Rodríguez, C., González-Castro, P., González-Pineda, J. A. y Torrance, M. (2016). Elementary students’ metacognitive processes and post-performance calibration on mathematical problem-solving tasks. Metacognition and Learning, 11, 139-170. https://doi.org/10.1007/s11409-015-9139-1 DOI: https://doi.org/10.1007/s11409-015-9139-1

Gómez-Chacón, I. M., García-Madruga, J. A., Vila, J. Ó., Elosúa, M. R. y Rodríguez, R. (2014). The dual processes hypothesis in mathematics performance: Beliefs, cognitive reflection, working memory and reasoning. Learning and Individual Differences, 29, 67-73. https://doi.org/10.1016/j.lindif.2013.10.001 DOI: https://doi.org/10.1016/j.lindif.2013.10.001

Hacker, D.J., Bol, L. y Bahbahani, K. (2008). Explaining calibration accuracy in classroom contexts: the effects of incentives, reflection, and explanatory style. Metacognition and Learning, 3, 101-121. https://doi.org/10.1007/s11409-008-9021-5 DOI: https://doi.org/10.1007/s11409-008-9021-5

Hennessey, B. A. y Amabile, T. M. (2010). Creativity. Annual Review of Psychology, 61(1), 569-598. https://doi.org/10.1146/annurev.psych.093008.100416 DOI: https://doi.org/10.1146/annurev.psych.093008.100416

Hijarro-Vercher, A., Solaz-Portolés, J. J. y Sanjosé, V. (2023). Creatividad, metacognición y autoeficacia en la detección de errores en problemas resueltos. Revista Fuentes, 25(3), 256-266. https://doi.org/10.12795/revistafuentes.2023.23050 DOI: https://doi.org/10.12795/revistafuentes.2023.23050

Hu, W., Wu, B., Jia, X., Yi, X., Duan, C., Meyer, W. y Kaufman, J. C. (2013). Increasing students' scientific creativity: The “learn to think” intervention program. The Journal of Creative Behavior, 47(1), 3-21. https://doi.org/10.1002/jocb.20 DOI: https://doi.org/10.1002/jocb.20

Jia, X., Li, W. y Cao, L. (2019). The role of metacognitive components in creative thinking. Frontiers in Psychology, 10, 2404. https://doi.org/10.3389/fpsyg.2019.02404 DOI: https://doi.org/10.3389/fpsyg.2019.02404

Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus, and Giroux.

Kahneman, D., y Frederick, S. (2005). A model of heuristic judgement. In J. H. Keith y R. G. Morrison (Eds.), Cambridge handbook of thinking and reasoning (pp. 267-293). Cambridge University Press.

Kind, P. M. y Kind, V. (2007). Creativity in science education: Perspectives and challenges for developing school science. Studies in Science Education, 43(1), 1-37. https://doi.org/10.1080/03057260708560225 DOI: https://doi.org/10.1080/03057260708560225

Kruger, J. y Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence led to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121-1134. https://doi.org/10.1037/0022-3514.77.6.1121 DOI: https://doi.org/10.1037//0022-3514.77.6.1121

Lebuda, I. y Benedek, M. (2023). A systematic framework of creative metacognition. Physics of Life Reviews, 46, 161-181. https://doi.org/10.1016/j.plrev.2023.07.002 DOI: https://doi.org/10.1016/j.plrev.2023.07.002

Lin, C., Hu, W., Adey, P. y Shen, J. (2003). The influence of CASE on scientific creativity. Research in Science Education, 33, 143-162. https://doi.org/10.1023/A:1025078600616 DOI: https://doi.org/10.1023/A:1025078600616

LOMLOE (2020). Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación.

https://www.boe.es/diario_boe/txt.php?id=BOE-A-2020-17264

Longo, C. (2010). Fostering Creativity or Teaching to the Test? Implications of State Testing on the Delivery of Science Instruction. The Clearing House, 83(2), 54-57. https://doi.org/10.1080/00098650903505399 DOI: https://doi.org/10.1080/00098650903505399

Meyer, A. A. y Lederman, N. G. (2013). Inventing creativity: An exploration of the pedagogy of ingenuity in science classrooms. School Science and Mathematics, 113(8), 400-409. https://onlinelibrary.wiley.com/doi/epdf/10.1111/ssm.12039 DOI: https://doi.org/10.1111/ssm.12039

Ministerio de Educación, Formación Profesional y Deporte (2023). PISA 2022. Marco conceptual de Pensamiento Creativo. Secretaria General Técnica del Ministerio. https://libreria.educacion.gobierno.es

NRC (National Research Council). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

OECD. (2004). Innovation in the knowledge economy: Implications for education and learning. OECD Publications. DOI: https://doi.org/10.1787/9789264105621-en

OECD. (2008). Innovating to learn, learning to innovate. OECD. DOI: https://doi.org/10.1787/journal_dev-v9-2-en

Orkibi, H. (2021). Creative adaptability: Conceptual framework, measurement, and outcomes in times of crisis. Frontiers in Psychology, 11, 588172. https://doi.org/10.3389/fpsyg.2020.588172 DOI: https://doi.org/10.3389/fpsyg.2020.588172

Oskamp, S. (1965). Overconfidence in case-study judgments. The Journal of Consulting Psychology, 29, 261-265. https://doi.org/10.1037/h0022125 DOI: https://doi.org/10.1037/h0022125

Otero, I., Salgado, J. F. y Moscoso, S. (2022). Cognitive reflection, cognitive intelligence, and cognitive abilities: A meta-analysis. Intelligence, 90, 101614. https://doi.org/10.1016/j.intell.2021.101614 DOI: https://doi.org/10.1016/j.intell.2021.101614

Pesout, O. y Nietfeld, J. L. (2021). How creative am I? Examining judgments and predictors of creative performance. Thinking Skills and Creativity, 40, 100836. https://doi.org/10.1016/j.tsc.2021.100836 DOI: https://doi.org/10.1016/j.tsc.2021.100836

Preiss, D. D. (2022). Metacognition, mind wandering, and cognitive flexibility: Understanding creativity. Journal of Intelligence, 10(3), 69. https://doi.org/10.3390/jintelligence10030069 DOI: https://doi.org/10.3390/jintelligence10030069

Ramly, S. N. F., Ahmad, N. J. y Yakob, N. (2022). Development, validity, and reliability of chemistry scientific creativity test for pre-university students. International Journal of Science Education, 44(14), 1-16. https://doi.org/10.1080/09500693.2022.2116298 DOI: https://doi.org/10.1080/09500693.2022.2116298

Runco, M. A. y Jaeger, G. J. (2012). The Standard Definition of Creativity. Creativity Research Journal, 24(1), 92-96. https://doi.org/10.1080/10400419.2012.650092 DOI: https://doi.org/10.1080/10400419.2012.650092

Sáenz, C. y Bruno, G. N. (2018). Calibración, autoconcepto y competencia matemática. Avances de Investigación en Educación Matemática, 14, 1-14. https://doi.org/10.35763/aiem.v0i14.178 DOI: https://doi.org/10.35763/aiem.v0i14.178

Sawyer, R. K. (2021). The iterative and improvisational nature of the creative process. Journal of Creativity, 31, 100002. https://doi.org/10.1016/j.yjoc.2021.100002 DOI: https://doi.org/10.1016/j.yjoc.2021.100002

Siew, N. M., Chong, C. L. y Chin, K. O. (2014). Developing a scientific creativity test for fifth graders. Problems of Education in the 21st Century, 62, 109-123. https://doi.org/10.33225/pec/14.62.109 DOI: https://doi.org/10.33225/pec/14.62.109

Sternberg, R. J. (Ed.). (1999). Handbook of creativity. Cambridge University Press.

Sternberg, R. J., Todhunter, R. J., Litvak, A. y Sternberg, K. (2020). The relation of scientific creativity and evaluation of scientific impact to scientific reasoning and general intelligence. Journal of Intelligence, 8(2), 17. https://doi.org/10.3390/jintelligence8020017 DOI: https://doi.org/10.3390/jintelligence8020017

Toplak, M. E., West, R. F. y Stanovich, K. E. (2011). The Cognitive Reflection Test as a predictor of performance on heuristics-and-biases tasks. Memory & Cognition, 39, 1275-1289. https://doi.org/10.3758/s13421-011-0104-1 DOI: https://doi.org/10.3758/s13421-011-0104-1

Urban, M. y Urban, K. (2024). Do we need metacognition for creativity? A necessary condition analysis of creative metacognition. Psychology of Aesthetics, Creativity, and the Arts. Advance online publication. https://doi.org/10.1037/aca0000647 DOI: https://doi.org/10.1037/aca0000647

Yang, K. K., Hong, Z. R., Lee, L. y Lin, H. S. (2019). Exploring the significant predictors of convergent and divergent scientific creativities. Thinking Skills and Creativity, 31, 252-261. https://doi.org/10.1016/j.tsc.2019.01.002 DOI: https://doi.org/10.1016/j.tsc.2019.01.002

Yang, K. K., Lin, S. F., Hong, Z. R. y Lin, H. S. (2016). Exploring the assessment of and relationship between elementary students’ scientific creativity and science inquiry. Creativity Research Journal, 28(1), 16-23. https://doi.org/10.1080/10400419.2016.1125270 DOI: https://doi.org/10.1080/10400419.2016.1125270

Young, A. G. y Shtulman, A. (2020). Children’s cognitive reflection predicts conceptual understanding in science and mathematics. Psychological Science, 31(11), 1396-1408. https://doi.org/10.1177/0956797620954449 DOI: https://doi.org/10.1177/0956797620954449

Published

2025-08-28

How to Cite

Cifre-Herrando, M., Solaz-Portolés, J. J., & Sanjosé López, V. (2025). Exploring the impact of cognitive reflection and calibration on scientific creative tasks in secondary education. European Public & Social Innovation Review, 11, 1–17. https://doi.org/10.31637/epsir-2026-1991

Issue

Section

Cover articles