Virtual tools for clinical diagnosis: 3D finite element models in biomechanics

Authors

DOI:

https://doi.org/10.31637/epsir-2024-300

Keywords:

3D models, finite elements, biomechanics, biological tissues, analytical tools, stress distribution, knee joint, lateral discoid meniscus

Abstract

Introduction: This article explores the potential of three-dimensional finite element models as clinical diagnostic tools, aiding surgeons in virtual intervention planning and practice, thereby minimizing risks and enhancing precision during surgical procedures. Methodology: the methodology details the strategy employed to develop practical approaches for generating three-dimensional finite element models, using a case study of a knee joint with lateral discoid meniscus malformation. Results: the implementation of structured processes has yielded a suitable analysis tool for finite element method simulations. Discussions: The discussion emphasizes the potential of three-dimensional finite element models for clinical diagnostics and underscores the importance of integrating these practices into educational and research environments to foster innovative learning experiences that bridge theoretical concepts with practical, real-world scenarios. Conclusions: three-dimensional finite element models represent robust analytical tools with significant potential for elucidating the evolution and biomechanical dynamics of biological tissues, thereby benefiting clinical diagnostics, decision-making processes, and healthcare professional training.

Downloads

Download data is not yet available.

Author Biographies

Lourdes Segovia, National University of Distance Education

Graduate in Technical Industrial Engineering specialising in Mechanics and Degree in Industrial Engineering from the University of Salamanca. She holds a Master's Degree in Research in Industrial Technologies from the Universidad Nacional de Educación a Distancia (UNED). She is a member of the Sinergia Digital research group at the University Corporation of Asturias. She currently collaborates as an online lecturer at the Asturias University Corporation and the European Graduate Institute. She holds the position of academic director at the European Graduate Institute. Currently, she is an applicant for a PhD in Industrial Technologies Research in the biomechanics research line, by the UNED and an applicant for a PhD in Education in the Education and ICT research line by the European University of Monterrey.

Miryam Beatriz Sánchez Sánchez, National University of Distance Education

Industrial Technical Engineer (1998-2001) and Industrial Automation and Electronics (2001-2003) by ICAI. Master's Degree in Research in Industrial Technologies and PhD in Industrial Technologies (2013) with outstanding "cum laude" and extraordinary doctorate award from the UNED. Expert in the development of calculation models for cylindrical gears. Professional experience as R&D Engineer in SAC MAKER, S.A. (2003-2004) and in EADS ASTRIUM CRISA (2004-2008). Experience in educational management as Secretary of the Master in Research in Industrial Technologies (2014-2017), of the Master in Industrial Engineering (2019-present), and Assistant Secretary of the School of Industrial Engineering at UNED (2019-present).

References

Aboelfadl, A., Keilig, L., Ebeid, K., Ahmed, M. A. M., Nouh, I., Refaie, A. y Bourauel, C. (2024). Biomechanical behavior of implant retained prostheses in the posterior maxilla using different materials: a finite element study. BMC Oral Health, 24(1). https://doi.org/10.1186/s12903-024-04142-8 DOI: https://doi.org/10.1186/s12903-024-04142-8

Alqahtani, A. R., Desai, S. R., Patel, J. R., Alqhtani, N. R., Alqahtani, A. S., Heboyan, A., De Oliveira Fernandes, G. V., Mustafa, M. y Karobari, M. I. (2023). Investigating the impact of diameters and thread designs on the Biomechanics of short implants placed in D4 bone: a 3D finite element analysis. BMC Oral Health, 23(1). https://doi.org/10.1186/s12903-023-03370-8 DOI: https://doi.org/10.1186/s12903-023-03370-8

Antonini, L., Poletti, G., Pennati, G. y Petrini, L. (2023). A review on the use of finite element simulations for structural analyses of coronary stenting: What can we do nowadays and what do we need to move forward? European Journal Of Mechanics. A, Solids/European Journal Of Mechanics, A, Solids, 101, 105071. https://doi.org/10.1016/j.euromechsol.2023.105071 DOI: https://doi.org/10.1016/j.euromechsol.2023.105071

Aubert, K., Germaneau, A., Rochette, M., Ye, W., Severyns, M., Billot, M., Rigoard, P. y Vendeuvre, T. (2021). Development of Digital Twins to Optimize Trauma Surgery and Postoperative Management. A Case Study Focusing on Tibial Plateau Fracture. Frontiers In Bioengineering And Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.722275 DOI: https://doi.org/10.3389/fbioe.2021.722275

Badiali, G., Bevini, M., Gulotta, C., Lunari, O., Parenti, S. I., Pironi, M., Bianchi, A., Felice, P. y Marchetti, C. (2022). Three-dimensional cephalometric outcome predictability of virtual orthodontic-surgical planning in surgery-first approach. Progress In Orthodontics, 23(1). https://doi.org/10.1186/s40510-022-00448-x DOI: https://doi.org/10.1186/s40510-022-00448-x

Berton, A., Salvatore, G., Giambini, H., Ciuffreda, M., Longo, U. G., Denaro, V., Thoreson, A. y An, K. (2018). A 3D finite element model of prophylactic vertebroplasty in the metastatic spine: Vertebral stability and stress distribution on adjacent vertebrae. The Journal Of Spinal Cord Medicine/Journal Of Spinal Cord Medicine, 43(1), 39-45. https://doi.org/10.1080/10790268.2018.1432309 DOI: https://doi.org/10.1080/10790268.2018.1432309

Carvalho, L., Roriz, P., Simões, J. y Frazão, O. (2015). New Trends in Dental Biomechanics with Photonics Technologies. Applied Sciences, 5(4), 1350-1378. https://doi.org/10.3390/app5041350 DOI: https://doi.org/10.3390/app5041350

Chatellard, R., Sauleau, V., Colmar, M., Robert, H., Raynaud, G. y Brilhault, J. (2013). Medial unicompartmental knee arthroplasty: Does tibial component position influence clinical outcomes and arthroplasty survival? Orthopaedics y Traumatology: Surgery y Research, 99(4), S219-S225. https://doi.org/10.1016/j.otsr.2013.03.004 DOI: https://doi.org/10.1016/j.otsr.2013.03.004

Chiari, A., Mantovani, S., Berzaghi, A., Bellucci, D., Bortolini, S. y Cannillo, V. (2023). Load bearing capability of three-units 4Y-TZP monolithic fixed dental prostheses: An innovative model for reliable testing. Materials y Design, 227, 111751. https://doi.org/10.1016/j.matdes.2023.111751 DOI: https://doi.org/10.1016/j.matdes.2023.111751

Desai, S. R., Koulgikar, K. D., Alqhtani, N. R., Alqahtani, A. R., Alqahtani, A. S., Alenazi, A., Heboyan, A., Fernandes, G. V. O. y Mustafa, M. (2023). Three-Dimensional FEA Analysis of the Stress Distribution on Titanium and Graphene Frameworks Supported by 3 or 6-Implant Models. Biomimetics, 8(1), 15. https://doi.org/10.3390/biomimetics8010015 DOI: https://doi.org/10.3390/biomimetics8010015

Feng, B., Gao, Q., Dai, G., Niu, K., Jiang, W., Wang, Z. y Zheng, H. (2023). Comparison of different internal fixation models in ankle arthrodesis using 3D finite-element analysis. European Journal Of Medical Research, 28(1). https://acortar.link/mb3zyk DOI: https://doi.org/10.1186/s40001-023-01554-0

Grassi, L., Fleps, I., Sahlstedt, H., Väänänen, S. P., Ferguson, S. J., Isaksson, H. y Helgason, B. (2021). Validation of 3D finite element models from simulated DXA images for biofidelic simulations of sideways fall impact to the hip. Bone, 142, 115678. https://doi.org/10.1016/j.bone.2020.115678 DOI: https://doi.org/10.1016/j.bone.2020.115678

Grassi, L., Väänänen, S. P., Jehpsson, L., Ljunggren, Ö., Rosengren, B., Karlsson, M. K. y Isaksson, H. (2023). 3D Finite Element Models Reconstructed From 2D Dual‐Energy X‐Ray Absorptiometry (DXA) Images Improve Hip Fracture Prediction Compared to Areal BMD in Osteoporotic Fractures in Men (MrOS) Sweden Cohort. Journal Of Bone And Mineral Research, 38(9), 1258-1267. https://doi.org/10.1002/jbmr.4878 DOI: https://doi.org/10.1002/jbmr.4878

Gupta, R. K., Malhotra, P., Bhargava, A., Singh, M., Paul, A. y Dua, B. (2024). Stress Transmission on Bone and Prosthetic Screws Influenced by Implant Position: A Finite

Element Analysis. International Journal Of Prosthodontics And Restorative Dentistry, 14(1), 45-49. https://doi.org/10.5005/jp-journals-10019-1444 DOI: https://doi.org/10.5005/jp-journals-10019-1444

Halonen, K., Mononen, M. E., Jurvelin, J. S., Töyräs, J., Salo, J. y Korhonen, R. K. (2014). Deformation of articular cartilage during static loading of a knee joint – Experimental and finite element analysis. Journal Of Biomechanics, 47(10), 2467-2474. https://doi.org/10.1016/j.jbiomech.2014.04.013 DOI: https://doi.org/10.1016/j.jbiomech.2014.04.013

Kedgley, A. E., Saw, T., Segal, N., Hansen, U., Bull, A. M. J. y Masouros, S. D. (2018). Predicting meniscal tear stability across knee-joint flexion using finite-element analysis. Knee Surgery, Sports Traumatology, Arthroscopy, 27(1), 206-214. https://doi.org/10.1007/s00167-018-5090-4 DOI: https://doi.org/10.1007/s00167-018-5090-4

Kim, C. N. T., Binh, C. X., Dung, V. T. y Toan, T. V. (2023). Design and mechanical evaluation of a large cranial implant and fixation parts. Interdisciplinary Neurosurgery, 31, 101676. https://doi.org/10.1016/j.inat.2022.101676 DOI: https://doi.org/10.1016/j.inat.2022.101676

Li, L., Yang, L., Zhang, K., Zhu, L., Wang, X. y Jiang, Q. (2020). Three-dimensional finite-element analysis of aggravating medial meniscus tears on knee osteoarthritis. Journal Of Orthopaedic Translation, 20, 47-55. https://doi.org/10.1016/j.jot.2019.06.007 DOI: https://doi.org/10.1016/j.jot.2019.06.007

Liu, W., Sun, X., Liu, W., Líu, H., Zhai, H., Zhang, D., y Tian, F. (2022). Finite element study of a partial meniscectomy of a complete discoid lateral meniscus in adults. Medical Engineering y Physics, 107, 103855. https://doi.org/10.1016/j.medengphy.2022.103855 DOI: https://doi.org/10.1016/j.medengphy.2022.103855

Mao, S., Yang, L., Wang, F., He, P., Wu, X., Ma, X. y Luo, Y. (2023). Design and biomechanical analysis of patient-specific porous tantalum prostheses for knee joint revision surgery. International Journal Of Bioprinting, 9(4), 735. https://doi.org/10.18063/ijb.735 DOI: https://doi.org/10.18063/ijb.735

Mendonça, C. J. A., Da Rocha Guimarães, R. M., Pontim, C. E., Gasoto, S. C., Setti, J. A. P., Soni, J. F. y Schneider, B. (2023). An Overview of 3D Anatomical Model Printing in Orthopedic Trauma Surgery. Journal Of Multidisciplinary Healthcare, 16, 875-887. https://doi.org/10.2147/jmdh.s386406 DOI: https://doi.org/10.2147/JMDH.S386406

Michaud, F., Luaces, A., Mouzo, F. y Cuadrado, J. (2024). Use of patellofemoral digital twins for patellar tracking and treatment prediction: comparison of 3D models and contact detection algorithms. Frontiers In Bioengineering And Biotechnology, 12. https://doi.org/10.3389/fbioe.2024.1347720 DOI: https://doi.org/10.3389/fbioe.2024.1347720

Nalbone, L., Monac, F., Nalbone, L., Ingrassia, T., Ricotta, V., Nigrelli, V., Ferruzza, M., Tarallo, L., Porcellini, G. y Camarda, L. (2023). Study of a constrained finite element elbow prosthesis: the influence of the implant placement. Journal Of Orthopaedics And Traumatology, 24(1). https://doi.org/10.1186/s10195-023-00690-x DOI: https://doi.org/10.1186/s10195-023-00690-x

Norli, M. H. M., Sukimi, A. K. A., Ramlee, M. H., Mahmud, J. y Abdullah, A. H. (2024). Static Structural Analysis on Different Topology Optimization Transtibial Prosthetic Socket Leg. International Journal Of Technology, 15(2), 455. https://doi.org/10.14716/ijtech.v15i2.6711 DOI: https://doi.org/10.14716/ijtech.v15i2.6711

Patiño, J. F. R., Isaza, J. A., Mariaka, I. y Zea, J. A. V. (2013). Unidades Hounsfield como instrumento para la evaluación de la desmineralización ósea producida por el uso de

exoprótesis. Revista Facultad de Ingenieria-universidad de Antioquia, 66(66), 159-167. http://www.redalyc.org/pdf/430/43027041012.pdf

Peña, E., Calvo, B., Martı́Nez, M. Á. y Doblaré, M. (2006). A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal Of Biomechanics, 39(9), 1686-1701. https://doi.org/10.1016/j.jbiomech.2005.04.030 DOI: https://doi.org/10.1016/j.jbiomech.2005.04.030

Plesec, V. y Harih, G. (2023). Development of a Generic Numerical Transtibial Model for Limb–Prosthesis System Evaluation. Applied Sciences, 13(4), 2339. https://doi.org/10.3390/app13042339 DOI: https://doi.org/10.3390/app13042339

Schaffarzick, D., Entacher, K., Rafolt, D. y Schuller‐Götzburg, P. (2022). Temporary Protective Shoulder Implants for Revision Surgery with Bone Glenoid Grafting. Materials, 15(18), 6457. https://doi.org/10.3390/ma15186457 DOI: https://doi.org/10.3390/ma15186457

Siddiq, A. B., Clegg, D., Jansen, T. y Rasker, J. J. (2022). Emerging and New Treatment Options for Knee Osteoarthritis. Current Rheumatology Reviews, 18(1), 20-32. https://doi.org/10.2174/1573397117666211116111738 DOI: https://doi.org/10.2174/1573397117666211116111738

Tauviqirrahman, M., Ammarullah, M. I., Jamari, J., Saputra, E., Winarni, T. I., Kurniawan, F. D., Shiddiq, S. A. y Van Der Heide, E. (2023). Analysis of contact pressure in a 3D model of dual-mobility hip joint prosthesis under a gait cycle. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-30725-6 DOI: https://doi.org/10.1038/s41598-023-30725-6

Wang, B., Ke, W., Hua, W., Zeng, X. y Yang, C. (2020). Biomechanical Evaluation and the Assisted 3D Printed Model in the Patient-Specific Preoperative Planning for Thoracic Spinal Tuberculosis: A Finite Element Analysis. Frontiers In Bioengineering And Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00807 DOI: https://doi.org/10.3389/fbioe.2020.00807

Webb, J. D., Blemker, S. S. y Delp, S. L. (2012). 3D finite element models of shoulder muscles for computing lines of actions and moment arms. Computer Methods In Biomechanics And Biomedical Engineering, 17(8), 829-837. https://doi.org/10.1080/10255842.2012.719605 DOI: https://doi.org/10.1080/10255842.2012.719605

Yuan, B., Mo, Z., Zhang, K., Xu, Z., Yan, S. y Zeng, J. (2023). The effect of different posterior inclinations of tibial component on tibiofemoral contact pressures after unicompartmental knee arthroplasty. Journal Of Orthopaedic Surgery And Research, 18(1). https://doi.org/10.1186/s13018-023-04222-5 DOI: https://doi.org/10.1186/s13018-023-04222-5

Zhang, K., Li, L., Yang, L., Shi, J., Zhu, L., Liang, H., Wang, X., Yang, X. y Jiang, Q. (2019). The biomechanical changes of load distribution with longitudinal tears of meniscal horns on knee joint: a finite element analysis. Journal Of Orthopaedic Surgery And Research, 14(1). https://doi.org/10.1186/s13018-019-1255-1 DOI: https://doi.org/10.1186/s13018-019-1255-1

Zhu, J., Hu, J., Zhu, K. Y., Ma, X., Wang, Y., Xu, E., Huang, Z., Zhu, Y. y Zhang, C. (2023). Design of 3D-printed prostheses for reconstruction of periacetabular bone tumors using topology optimization. Frontiers In Bioengineering And Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1289363 DOI: https://doi.org/10.3389/fbioe.2023.1289363

Zhu, X., Sun, K., Xia, X., Chen, Y., Sun, A. y Chen, X. (2023). A preliminary biomechanical study on trachea reconstruction surgery using the clavicular periosteum. Frontiers In Bioengineering And Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1117483 DOI: https://doi.org/10.3389/fbioe.2023.1117483

Zienkiewicz, O. C., Taylor, R. L. y Zhu, J. (2013). The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann.

Published

2024-07-05

How to Cite

Segovia, L., & Sánchez Sánchez, M. B. (2024). Virtual tools for clinical diagnosis: 3D finite element models in biomechanics. European Public & Social Innovation Review, 9, 1–21. https://doi.org/10.31637/epsir-2024-300

Issue

Section

Research and Artificial Intelligence