The circular economy in production processes: a source of sustainability to create value in the fishing sector

Authors

DOI:

https://doi.org/10.31637/epsir-2024-334

Keywords:

Environmental differentiation strategy, fish farming sector, sustainable development objectives, value generation, circular economy

Abstract

Introduction: In the fish farming sector, the implementation of sustainable practices can generate economic, social and environmental value, through the reuse of waste, diversification of other by-products, contributing to the Sustainable Development Goals (SDGs). The objective: to analyze competitive environmental strategies for differentiation; as a commitment to the circular economy (C.E.) in the fishing sector, which contribute to reasonable fishing, integrated use, waste valorization and environmentally friendly renewable energies. Methodology: a documentary and descriptive approach is used, with a qualitative method of bibliographic reviews in Wos, Scopus and Google academic databases. Results: to contribute to the sector from the ecological resilience with this model to the competitiveness and environmental sustainability in its productive processes. This will produce lower costs, long-term surpluses, greater profitability and opportunities for value creation, employability, strengthening of the fish farming sector and social benefits in terms of improved quality of life. Discussion: this model is based on environmental, social and governance challenges, which require strategic alliances to mitigate environmental factors that affect viability and profitability in the fishing sector; with a holistic perception of risks and opportunities and how they impact business and social sustainability.

Downloads

Download data is not yet available.

Author Biographies

Lissette Gabriela Maldonado Niño, Simón Bolívar University

Administration of the Simón Bolívar University and Master in administration and innovation, specialist in financial management, Public Accountant by profession from the Universidad Libre, Junior researcher categorized by Colciencias, attached to the Gilocni research group of the Universidad Francisco de Paula Santander. Teacher with 11 years of experience, diplomas in teaching and academic didactics.

Ángel Cervera Paz, Universidad de Cádiz

PhD in Economic and Business Sciences, University of Cádiz; Bachelor's degree in CC. Economics and Business, lecturer at the Higher School of Engineering of the University of Cadiz Research Group Lean Management of Production and Hyperconnected Universal Integrated Logistics. PAIDI Areas: Social, Economic and Legal Sciences.

References

Alvarado-Ramírez, L., Santiesteban-Romero, B., Poss, G., Sosa-Hernández, J. E., Iqbal, H. M., Parra-Saldívar, R., Bonaccorso, A. D. y Melchor-Martínez, E. M. (2023). Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. Frontiers in Chemical Engineering, 4, 1072761. https://doi.org/10.3389/fceng.2022.1072761 DOI: https://doi.org/10.3389/fceng.2022.1072761

Amaral, R. A., Pinto, C. A., Lima, V., Tavares, J., Martins, A. P., Fidalgo, L. G., Silva, A. M., Gil, M. M., Teixeira, P., Barbosa, J., Barba, F. J. y Saraiva, J. A. (2021). Chemical-Based methodologies to extend the shelf life of fresh fish—A review. Foods, 10(10), 2300. https://www.mdpi.com/2304-8158/10/10/2300 DOI: https://doi.org/10.3390/foods10102300

Barón Dorado, A., Giménez Leal, G. y de Castro Vila, R. (2022). Environmental policy and corporate sustainability: The mediating role of environmental management systems in circular economy adoption. Corporate Social Responsibility and Environmental Management, 29(4), 830-842. https://doi.org/10.1002/csr.2238 DOI: https://doi.org/10.1002/csr.2238

Bhattacharya, A. y Roychoudhury, A. (2023). Microplastics in the Aquatic Environment–Effects on Ocean Carbon Sequestration and Sustenance of Marine Life. Microplastics in the Ecosphere: Air, Water, Soil, and Food, 189-200. https://doi.org/10.1002/9781119879534.ch12 DOI: https://doi.org/10.1002/9781119879534.ch12

Bi, R., Collier, C., Mann, R., Mills, K. E., Saba, V., Wiedenmann, J. y Jensen, O. P. (2023). How consistent is the advice from stock assessments? Empirical estimates of inter‐assessment bias and uncertainty for marine fish and invertebrate stocks. Fish and Fisheries, 24(1), 126-141. https://doi.org/10.1111/faf.12714 DOI: https://doi.org/10.1111/faf.12714

Brehm, J. M., Bulengela, G. y Onyango, P. (2022). Beyond rules and regulations: understanding the cultural and social significance of beach seine fishery on lake tanganyika, Tanzania. Maritime Studies, 21(1), 115-130. https://doi.org/10.1007/S40152-021-00249-8 DOI: https://doi.org/10.1007/s40152-021-00249-8

Buana, Y., & Barlian, E. (2023). Fostering community engagement towards sustainability in small-scale fisheries. In E3S Web of Conferences, 388, 04001. EDP Sciences. https://doi.org/10.1051/e3sconf/202338804001 DOI: https://doi.org/10.1051/e3sconf/202338804001

Colombo, S. M., Roy, K., Mraz, J., Wan, A. H., Davies, S. J., Tibbetts, S. M., Øverland, M., Francis, D. S., Rocker, M. M., Gasco, L., Spencer, E., Metian, M., Trushenski, J. T. y Turchini, G. M. (2023). Towards achieving circularity and sustainability in feeds for farmed blue foods. Reviews in Aquaculture, 15(3), 1115-1141. https://doi.org/10.1111/raq.12766 DOI: https://doi.org/10.1111/raq.12766

Crear, D. P., Curtis, T. H., Hutt, C. P. y Lee, Y. W. (2023). Climate‐influenced shifts in a highly migratory species recreational fishery. Fisheries Oceanography, 32(4), 327-340. https://doi.org/10.1111/fog.12632 DOI: https://doi.org/10.1111/fog.12632

Das, B. K., Meena, D. K., Das, A. y Sahoo, A. K. (2022). Prospects of Smart Aquaculture in Indian Scenario: A New Horizon in the Management of Aquaculture Production Potential. In Smart and Sustainable Food Technologies (pp. 59-85). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1746-2_3 DOI: https://doi.org/10.1007/978-981-19-1746-2_3

Desai, A. S., Brennan, M., Gangan, S. S. y Brennan, C. (2022). Utilization of fish waste as a value-added ingredient: sources and bioactive properties of fish protein hydrolysate. In Sustainable Fish Production and Processing (pp. 203-225). Academic Press.

https://doi.org/10.1016/B978-0-12-824296-4.00004-9 DOI: https://doi.org/10.1016/B978-0-12-824296-4.00004-9

Dhanapal, K. y Kumar, G. P. (2023). Freezing of Fish and Fishery Products: Basics and Advancements. In Advances in Fish Processing Technologies (pp. 53-74). Apple Academic Press. https://doi.org/10.1201/9781003300595-4 DOI: https://doi.org/10.1201/9781003300595-4

Doza, S., Bovbjerg, V. E., Vaughan, A., Nahorniak, J. S., Case, S. y Kincl, L. D. (2022). Health-related exposures and conditions among US fishermen. Journal of agromedicine, 27(3), 284-291. https://doi.org/10.1080/1059924X.2021.1944416 DOI: https://doi.org/10.1080/1059924X.2021.1944416

El Abed, N. y Özogul, F. (2023). The risks of marine micro/nano-plastics on seafood safety and human health. In Advances in Food and Nutrition Research, 103, 229-271. Academic Press. https://doi.org/10.1016/bs.afnr.2022.08.004 DOI: https://doi.org/10.1016/bs.afnr.2022.08.004

Ezdini, I. (2023). Companies’ actions for more sustainable consumption. Prosperitas, 10(1), 1-19. https://doi.org/10.31570/prosp_2022_0024 DOI: https://doi.org/10.31570/prosp_2022_0024

Fletcher, C. A., St Clair, R. y Sharmina, M. (2021). Seafood businesses’ resilience can benefit from circular economy principles. Nature Food, 2(4), 228-232.

https://doi.org/10.1038/S43016-021-00262-4 DOI: https://doi.org/10.1038/s43016-021-00262-4

Fraj-Andrés, E., Herrando, C., Lucia-Palacios, L. y Pérez-López, R. (2023). Informative initiatives as a useful tool to raise awareness of food waste. An application to higher education. International Journal of Sustainability in Higher Education, 24(4), 840-858. https://doi.org/10.1108/ijshe-03-2022-0103 DOI: https://doi.org/10.1108/IJSHE-03-2022-0103

Gilman, E., Musyl, M., Suuronen, P., Chaloupka, M., Gorgin, S., Wilson, J. y Kuczenski, B. (2021). Highest risk abandoned, lost and discarded fishing gear. Scientific Reports, 11(1), 7195. https://doi.org/10.1038/S41598-021-86123-3 DOI: https://doi.org/10.1038/s41598-021-86123-3

Gonçalves, E. J. (2023). Marine protected areas as tools for ocean sustainability. Blue Planet Law, 131. https://doi.org/10.1007/978-3-031-24888-7_11 DOI: https://doi.org/10.1007/978-3-031-24888-7_11

González-Camejo, J., Andreola, C., Maceratesi, V., Toscano, G., Eusebi, A. L. y Fatone, F. (2023). Biorefineries to improve water and resource recovery in the seafood-processing industry. In Advanced Technologies in Wastewater Treatment (pp. 127-154). Elsevier. https://doi.org/10.1016/b978-0-323-88510-2.00002-6 DOI: https://doi.org/10.1016/B978-0-323-88510-2.00002-6

Gündüz, H., Öztürk, F., Hamzaçebi, S. y Akpınar, M. D. (2018). The assessment of seafood processing waste. Aquatic Sciences and Engineering, 33(1), 1-5. https://doi.org/10.18864/ASE201801 DOI: https://doi.org/10.18864/ASE201801

Ismoyowati, D., Mafruhah, I., Istiqomah, N. y Mulyani, N. S. (2023). Implementation of Reuse and Recycle Models as an Effort to Fulfill Fish Feed for Fisherman’s Cage in Kedung Ombo. Journal of Innovation and Community Engagement, 4(1), 61-77. https://doi.org/10.28932/ice.v4i1.5586 DOI: https://doi.org/10.28932/ice.v4i1.5586

Jenkins, L. D. (2023). Turtles, TEDs, tuna, dolphins, and diffusion of innovations: key drivers of adoption of bycatch reduction devices. ICES Journal of Marine Science, 80(3), 417-436. https://doi.org/10.1093/icesjms/fsac210 DOI: https://doi.org/10.1093/icesjms/fsac210

Johnson, M. P. (2021). Farm Production Diversity in Aquaculture Has Been Overlooked as a Contributor to Sustainability. Frontiers in Sustainable Food Systems, 5, 655346.

https://doi.org/10.3389/FSUFS.2021.655346 DOI: https://doi.org/10.3389/fsufs.2021.655346

Konash, A. y Nasr, N. (2022). The circular economy and resource use reduction: A case study of long-term resource efficiency measures in a medium manufacturing company. Cleaner Production Letters, 3, 100025. https://doi.org/10.1016/j.clpl.2022.100025 DOI: https://doi.org/10.1016/j.clpl.2022.100025

Kozioł, A., Paso, K. G. y Kuciel, S. (2022). Properties and recyclability of abandoned fishing net-based plastic debris. Catalysts, 12(9), 948. https://doi.org/10.3390/catal12090948 DOI: https://doi.org/10.3390/catal12090948

Kurniawan, Z. (2023). Fisheries Business Management In The Globalization Era. Barakuda'45, 5(1), 114-122. https://doi.org/10.47685/barakuda45.v5i1.371 DOI: https://doi.org/10.47685/barakuda45.v5i1.371

Lakra, W. S. y Krishnani, K. K. (2022). Circular bioeconomy for stress-resilient fisheries and aquaculture. In Biomass, biofuels, biochemicals (pp. 481-516). Elsevier. https://doi.org/10.1016/b978-0-323-89855-3.00010-8 DOI: https://doi.org/10.1016/B978-0-323-89855-3.00010-8

Lemke, L. R. y Simpfendorfer, C. A. (2023). Gillnet size selectivity of shark and ray species from Queensland, Australia. Fisheries Management and Ecology, 30(3), 300-309. https://doi.org/10.1111/fme.12620 DOI: https://doi.org/10.1111/fme.12620

Lionetto, F., Bagheri, S. y Mele, C. (2021). Sustainable materials from fish industry waste for electrochemical energy systems. Energies, 14(23), 7928. https://doi.org/10.3390/EN14237928 DOI: https://doi.org/10.3390/en14237928

Mohan, C. O., Remya, S., Sreelakshmi, K. R., Elavarasan, K. y Ravishankar, C. N. (2023). Emerging Fish Processing and Packaging Technologies: An Overview. Advances in Fish Processing Technologies, 75-100. https://doi.org/10.1201/9781003300595-5 DOI: https://doi.org/10.1201/9781003300595-5

Napier, J. A., Haslam, R. P., Olsen, R. E., Tocher, D. R. y Betancor, M. B. (2020). Agriculture can help aquaculture become greener. Nature Food, 1(11), 680-683. https://doi.org/10.1038/S43016-020-00182-9 DOI: https://doi.org/10.1038/s43016-020-00182-9

Österblom, H., Cvitanovic, C., van Putten, I., Addison, P., Blasiak, R., Jouffray, J. B. Bebbington, J., Hall, J., Ison, S., LeBris, A., Mynott, S., Reid, D. y Sugimoto, A. (2020). Science-industry collaboration: sideways or highways to ocean sustainability?. One Earth, 3(1), 79-88. https://doi.org/10.1016/J.ONEEAR.2020.06.011 DOI: https://doi.org/10.1016/j.oneear.2020.06.011

Ouchi, S., Wilson, L., Wabnitz, C. C., Golden, C. D., Beaudreau, A. H., Kenny, T. A., Singh, G. G., Cheung, W. W. L., Man Chan, H. y Salomon, A. K. (2022). Opposing trends in fisheries portfolio diversity at harvester and community scales signal opportunities for adaptation. FACETS. https://doi.org/10.1139/facets-2022-0048 DOI: https://doi.org/10.1139/facets-2022-0048

Pedro, A. L., Rodolfo, R. V., Arturo, M. H. P., Nazmín, T. G. D. y Antonio, S. J. L. (2023). Cold chain relevance in the food safety of perishable products. Foods and Raw materials, 11(1), 116-128. https://doi.org/10.21603/2308-4057-2023-1-559 DOI: https://doi.org/10.21603/2308-4057-2023-1-559

Poorbagher, H., Rafiee, G., Rezaei Tavabe, K. y Moezzi, F. (2021). Abatement of water nutrient load in a fish culture system using the aquatic trophic levels. Water Environment Research, 93(12), 3011-3022. https://doi.org/10.1002/WER.1652 DOI: https://doi.org/10.1002/wer.1652

Raeesi, R., Shabanpour, B. y Pourashouri, P. (2023). Use of fish waste to silage preparation and its application in animal nutrition. Online Journal of Animal and Feed Research, 13(2), 79-88. https://doi.org/10.51227/ojafr.2023.13 DOI: https://doi.org/10.51227/ojafr.2023.13

Rasool, K., Hussain, S., Shahzad, A., Miran, W., Mahmoud, K. A., Ali, N. y Almomani, F. (2023). Comprehensive insights into sustainable conversion of agricultural and food waste into microbial protein for animal feed production. Reviews in Environmental Science and Bio/Technology, 22(2), 527-562. https://doi.org/10.1007/s11157-023-09651-6 DOI: https://doi.org/10.1007/s11157-023-09651-6

Raut, P. D. (2022). Biotechnology in Waste Management. In Emerging Trends in Environmental Biotechnology (pp. 23-32). CRC Press. https://doi.org/10.1201/9781003186304-3 DOI: https://doi.org/10.1201/9781003186304-3

Ruelas-Chacon, X., Aguilar-González, A., de la Luz Reyes-Vega, M., Peralta-Rodríguez, R. D., Corona-Flores, J., Rebolloso-Padilla, O. N. y Aguilera-Carbo, A. F. (2020). Bioactive protecting coating of guar gum with thyme oil to extend shelf life of tilapia (Oreoschromis niloticus) fillets. Polymers, 12(12), 3019. https://doi.org/10.3390/POLYM12123019 DOI: https://doi.org/10.3390/polym12123019

Ruiz-Jarabo, I., Partida, B., Page, M., Madera, D., Saiz, N., Alonso-Gómez, A., Herrera-Castillo, L., Isorna, E., Alonso-Gómez, A. L., Valenciano, A. I., de Pedro, N., Saez, J. y Delgado, M. J. (2022). Economic improvement of artisanal fishing by studying the survival of discarded Plectorhinchus mediterraneus. Animals, 12(23), 3423. https://doi.org/10.3390/ani12233423 DOI: https://doi.org/10.3390/ani12233423

Speranza, B., Racioppo, A., Bevilacqua, A., Buzzo, V., Marigliano, P., Mocerino, E., Scognamiglio, R., Corbo, M. R., Scognamiglio, G. y Sinigaglia, M. (2021). Innovative preservation methods improving the quality and safety of fish products: Beneficial effects and limits. Foods, 10(11), 2854. https://doi.org/10.3390/FOODS10112854 DOI: https://doi.org/10.3390/foods10112854

Sugandi, I., Abdoellah, O. S. y Gunawan, B. (2022). Analysis of the sustainable development policies of local communities in Indonesia. Transformasi: Jurnal Manajemen Pemerintahan, 101-118. https://doi.org/10.33701/jtp.v14i2.2258 DOI: https://doi.org/10.33701/jtp.v14i2.2258

Sultan, F. A., Routroy, S. y Thakur, M. (2023). Understanding fish waste management using bibliometric analysis: a supply chain perspective. Waste Management & Research, 41(3), 531-553. https://doi.org/10.1177/0734242X221122556 DOI: https://doi.org/10.1177/0734242X221122556

Taroncher, M., Rodríguez-Carrasco, Y., Barba, F. J. y Ruiz, M. J. (2023). Enhancement of the antioxidant effect of natural products on the proliferation of Caco-2 cells produced by fish protein hydrolysates and collagen. International Journal of Molecular Sciences, 24(7), 6871. https://doi.org/10.3390/ijms24076871 DOI: https://doi.org/10.3390/ijms24076871

Thakur, M., Cowan, E., Widell, K. N., Mozuraityte, R. y Slizyte, R. (2021). A multidisciplinary approach for improving resource efficiency in the Indian surimi supply chain. Applied Sciences, 11(22), 10984. https://doi.org/10.3390/APP112210984 DOI: https://doi.org/10.3390/app112210984

Willette, D. A., Ababouch, L., Barber, P. H., Bunje, P. M., Cauzac, J. P., Conchon, A., & Trenkel, V. M. (2023). Emerging monitoring technologies to reduce illegal fishing activities at sea and prevent entry of fraudulent fish into markets. Frontiers in Sustainable Food Systems, 7, 1166131. https://doi.org/10.3389/fsufs.2023.1166131 DOI: https://doi.org/10.3389/fsufs.2023.1166131

Yehia, H. M., Alkhuriji, A. F., Al-Masoud, A. H., Tsiraki, M. y Mosilhey, S. H. (2022). The quality of handling and extended the shelf life and preservation of lagoon mullets fish (Mugil cephalus). Food Science and Technology, 42, e53722. https://doi.org/10.1590/fst.53722 DOI: https://doi.org/10.1590/fst.53722

Yucel-Gier, G., Eronat, C. y Sayin, E. (2019). The impact of marine aquaculture on the environment; the importance of site selection and carrying capacity. https://doi.org/10.4236/AS.2019.103022 DOI: https://doi.org/10.4236/as.2019.103022

Zhang, L. (2021). Global fisheries management and community interest. Sustainability, 13(15), 8586. https://doi.org/10.3390/SU13158586 DOI: https://doi.org/10.3390/su13158586

Downloads

Published

2024-07-19

How to Cite

Maldonado Niño, L. G., & Cervera Paz, Ángel. (2024). The circular economy in production processes: a source of sustainability to create value in the fishing sector. European Public & Social Innovation Review, 9, 1–22. https://doi.org/10.31637/epsir-2024-334

Issue

Section

Cover articles