Analysis of Innovative Strategies for Student Retention with Artificial Intelligence: A Multidisciplinary Perspective
DOI:
https://doi.org/10.31637/epsir-2024-440Keywords:
higher education, artificial intelligence, machine learning, neural networks, big data, learning analytics, student retention, systematic reviewAbstract
Introduction: Higher education is transforming with the adoption of virtual modalities and the integration of technologies such as artificial intelligence (AI), machine learning (ML), neural networks (NN), and big data (BD). These technologies are redefining access and student retention, offering personalized solutions to enhance the educational experience in virtual environments. Methodology: This systematic review, based on the PRISMA method, examines how the interaction of AI, ML, NN, and BD influences the prediction and management of student dropout, highlighting the applications of learning analytics (LA) to improve educational interventions. Results: The results show that AI, ML, and BD are effective in predicting and managing school dropout, allowing for more personalized interventions. Analyzing large volumes of data helps identify crucial patterns for designing retention strategies. Discussion: Despite the significant improvements in personalized learning and resource optimization offered by these technologies, they face ethical and operational challenges that must be considered. Conclusions: The integration of AI, ML, NN, and BD in higher education is a promising approach to enriching the student experience and outcomes, emphasizing the importance of strategic investments and a robust ethical framework for effective implementation.
Downloads
References
Albreiki, B. (2022). Framework for automatically suggesting remedial actions to help students at risk based on explainable ML and rule-based models. International Journal Of Educational Technology In Higher Education, 19(1). https://acortar.link/u9ENJZ DOI: https://doi.org/10.1186/s41239-022-00354-6
Alcauter, I., Martínez-Villaseñor, L. y Pönce, H. (2023). Explaining Factors of Student Attrition at Higher Education. Computación y Sistemas, 27(4). https://acortar.link/FQJPXL DOI: https://doi.org/10.13053/cys-27-4-4776
Ayouni, S., Hajjej, F., Maddeh, M. y Al‐Otaibi, S. (2021). A new ML-based approach to enhance student engagement in online environment. PloS One, 16(11), e0258788. https://doi.org/10.1371/journal.pone.0258788 DOI: https://doi.org/10.1371/journal.pone.0258788
Brdesee, H., Alsaggaf, W., Aljohani, N. R. y Hassan, S. (2022). Predictive Model Using a Machine learning Approach for Enhancing the Retention Rate of Students At-Risk. International Journal On Semantic Web And Information Systems, 18(1), 1-21. https://doi.org/10.4018/ijswis.299859 DOI: https://doi.org/10.4018/IJSWIS.299859
Bulut, O., Gorgun, G., Yildirim-Erbasli, S. N., Wongvorachan, T., Daniels, L. M., Gao, Y., Lai, K. W. y Shin, J. (2022). Standing on the shoulders of giants: Online formative assessments as the foundation for predictive learning analytics models. British Journal Of Educational Technology, 54(1), 19-39. https://doi.org/10.1111/bjet.13276 DOI: https://doi.org/10.1111/bjet.13276
Cardona, T., Cudney, E. A., Hoerl, R. W. y Snyder, J. L. (2020). Data Mining and Machine learning Retention Models in Higher Education. Journal Of College Student Retention, 25(1), 51-75. https://doi.org/10.1177/1521025120964920 DOI: https://doi.org/10.1177/1521025120964920
Christou, V., Tsoulos, I. G., Loupas, V., Tzallas, A. T., Gogos, C., Karvelis, P., Antoniadis, N., Glavas, E. y Γιαννακέας, Ν. (2023). Performance and early drop prediction for higher education students using machine learning. Expert Systems With Applications, 225, 120079. https://doi.org/10.1016/j.eswa.2023.120079 DOI: https://doi.org/10.1016/j.eswa.2023.120079
Colpo, M. P., Primo, T. T. y De Aguiar, M. S. (2023). Lessons learned from the student dropout patterns on COVID‐19 pandemic: An analysis supported by machine learning. British Journal Of Educational Technology, 55(2), 560-585. https://doi.org/10.1111/bjet.13380 DOI: https://doi.org/10.1111/bjet.13380
Coral, M. Á. V., Salazar-Ramírez, L., Injante, R., Hernandez-Torres, E. A., Díaz, J. R. J., Navarro-Cabrera, J. R., Pinedo, L. y Vidaurre-Rojas, P. (2022). Density-Based Unsupervised Learning Algorithm to Categorize College Students into Dropout Risk Levels. Data, 7(11), 165. https://doi.org/10.3390/data7110165 DOI: https://doi.org/10.3390/data7110165
Crawford, J., Allen, K., Sanders, T., Baumeister, R. F., Parker, P. D., Saunders, C. y Tice, D. M. (2023). Sense of belonging in higher education students: an Australian longitudinal study from 2013 to 2019. Studies In Higher Education, 49(3), 395-409. https://doi.org/10.1080/03075079.2023.2238006 DOI: https://doi.org/10.1080/03075079.2023.2238006
Dake, D. K. y Buabeng-Andoh, C. (2022). Using Machine learning Techniques to Predict Learner Drop-out Rate in Higher Educational Institutions. Journal Of Mobile Information Systems, 1-9. https://doi.org/10.1155/2022/2670562 DOI: https://doi.org/10.1155/2022/2670562
Dávila, M. F. G., Cofre, I. J. M., Rosero, F. V. G. y Noroña, J. H. J. (2024). Inteligencia Artificial: Ventajas y desventajas de su uso en el proceso de enseñanza aprendizaje. MENTOR Revista de Investigación Educativa y Deportiva, 3(7), 202-224. https://doi.org/10.56200/mried.v3i7.7081 DOI: https://doi.org/10.56200/mried.v3i7.7081
Delcker, J., Heil, J., Ifenthaler, D., Seufert, S. y Spirgi, L. (2024). First-year students AI-competence as a predictor for intended and de facto use of AI-tools for supporting learning processes in higher education. International Journal Of Educational Technology In Higher Education, 21(1). https://doi.org/10.1186/s41239-024-00452-7 DOI: https://doi.org/10.1186/s41239-024-00452-7
Fahd, K., Venkatraman, S., Miah, S. J. y Ahmed, K. (2021). Application of machine learning in higher education to assess student academic performance, at-risk, and attrition: A meta-analysis of literature. Education And Information Technologies, 27(3), 3743-3775. https://doi.org/10.1007/s10639-021-10741-7 DOI: https://doi.org/10.1007/s10639-021-10741-7
Fauszt, T., Erdélyi, K., Dobák, D., Bognár, L. y Endre, K. (2023). Design of a Machine learning Model to Predict Student Attrition. International Journal Of Emerging Technologies In Learning/International Journal: Emerging Technologies In Learning, 18(17), 184-195. https://doi.org/10.3991/ijet.v18i17.41449 DOI: https://doi.org/10.3991/ijet.v18i17.41449
Ferrante E. (2021). Inteligencia artificial y sesgos algorítmicos. ¿Por qué deberían importarnos? https://static.nuso.org/media/articles/downloads/1.TC_Ferrante_294.pdf
Figueroa-Cañas, J. y Sancho‐Vinuesa, T. (2020). Early Prediction of Dropout and Final Exam Performance in an Online Statistics Course. IEEE-RITA, 15(2), 86-94. https://doi.org/10.1109/rita.2020.2987727 DOI: https://doi.org/10.1109/RITA.2020.2987727
Fomunyam, K. G. (2020). Theorising Machine learning as an Alternative Pathway for Higher Education in Africa. International Journal Of Education And Practice, 8(2), 268-277. https://doi.org/10.18488/journal.61.2020.82.268.277 DOI: https://doi.org/10.18488/journal.61.2020.82.268.277
Fontana, L., Masci, C., Ieva, F. y Paganoni, A. M. (2021). Performing Learning analytics via Generalised Mixed-Effects Trees. Data, 6(7), 74. https://doi.org/10.3390/data6070074 DOI: https://doi.org/10.3390/data6070074
Gkontzis, A. F., Kotsiantis, S., Panagiotakopoulos, C. y Verykios, V. S. (2019). A predictive analytics framework as a countermeasure for attrition of students. Interactive Learning Environments, 30(6), 1028-1043. https://doi.org/10.1080/10494820.2019.1709209 DOI: https://doi.org/10.1080/10494820.2019.1709209
Gutierrez-Pachas, D. A., Garcia-Zanabria, G., Cuadros-Vargas, E., Cámara-Chávez, G. y Gómez-Nieto, E. (2023). Supporting Decision-Making Process on Higher Education Dropout by Analyzing Academic, Socioeconomic, and Equity Factors through Machine learning and Survival Analysis Methods in the Latin American Context. Education Sciences, 13(2), 154. https://doi.org/10.3390/educsci13020154 DOI: https://doi.org/10.3390/educsci13020154
Guzmán, A., Moreno, S. B., Cala-Vitery, F. y Segovia-García, N. (2022). Deserción en la Educación Superior Rural: Análisis de Causas desde el Pensamiento Sistémico. Qualitative Research In Education, 11(2), 118-150. https://doi.org/10.17583/qre.10048 DOI: https://doi.org/10.17583/qre.10048
Halat, D. H., Abdel‐Salam, A. G., Said, A. B., Soltani, A., Alsarraj, L., Dalli, R. y Malki, A. (2023). Use of machine learning to assess factors affecting progression, retention, and graduation in first-year health professions students in Qatar: a longitudinal study. BMC Medical Education, 23(1). https://doi.org/10.1186/s12909-023-04887-w DOI: https://doi.org/10.1186/s12909-023-04887-w
Hinojosa, M., Dérpich, I., Alfaro, M., Ruete, D., Caroca, A. y Gatica, G. (2022). Procedimiento de agrupación de estudiantes según riesgo de abandono para mejorar la gestión estudiantil en educación superior. Texto Livre, 15, e37275. https://doi.org/10.35699/1983-3652.2022.37275 DOI: https://doi.org/10.35699/1983-3652.2022.37275
Hoyos-Osorio, K. y Santacoloma, G. D. (2023). Predictive Model to Identify College Students with High Dropout Rates. Revista Electrónica de Investigación Educativa, 25, 1-10. https://doi.org/10.24320/redie.2023.25.e13.5398 DOI: https://doi.org/10.24320/redie.2023.25.e13.5398
Ifenthaler, D. y Yau, J. Y. (2020). Utilising learning analytics to support study success in higher education: a systematic review. Educational Technology Research And Development, 68(4), 1961-1990. https://doi.org/10.1007/s11423-020-09788-z DOI: https://doi.org/10.1007/s11423-020-09788-z
Jongile, S. y Ivala, E. (2023). A Theory-Driven Learning Analytic Model for Detecting Students at Risk in Higher Education. Ubiquitous Learning, 17(2), 1-17. https://doi.org/10.18848/1835-9795/cgp/v17i02/1-17 DOI: https://doi.org/10.18848/1835-9795/CGP/v17i02/1-17
Köhler, J., y González‐Ibáñez, R. (2023). Information Competences and Academic Achievement: A Dataset. Data, 8(11), 164. https://doi.org/10.3390/data8110164 DOI: https://doi.org/10.3390/data8110164
Latif, G., Alghazo, R., Pilotti, M. y Brahim, G. B. (2022). Identifying «At-Risk» students: An AI-based prediction approach. International Journal Of Computing And Digital System, 11(1), 1051-1059. https://doi.org/10.12785/ijcds/110184 DOI: https://doi.org/10.12785/ijcds/110184
Martins, M. V., Baptista, L., Machado, J. y Realinho, V. (2023). Multi-Class Phased Prediction of Academic Performance and Dropout in Higher Education. Applied Sciences, 13(8), 4702. https://doi.org/10.3390/app13084702 DOI: https://doi.org/10.3390/app13084702
Matz, S., Bukow, C. S., Peters, H., Deacons, C. y Stachl, C. (2023). Using machine learning to predict student retention from socio-demographic characteristics and app-based engagement metrics. Scientific Reports, 13(1). https://acortar.link/OtN2Mj DOI: https://doi.org/10.1038/s41598-023-32484-w
Moher, D., Liberati, A., Tetzlaff, J. y Altman, D. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097 DOI: https://doi.org/10.1371/journal.pmed.1000097
Monteverde-Suárez, D., González-Flores, P., Santos-Solórzano, R., García-Minjares, M., Zavala-Sierra, I. R., De la Luz, V. L. y Sánchez‐Mendiola, M. (2024). Predicting students’ academic progress and related attributes in first-year medical students: an analysis with artificial neural networks and Naïve Bayes. BMC Medical Education, 24(1). https://doi.org/10.1186/s12909-023-04918-6 DOI: https://doi.org/10.1186/s12909-023-04918-6
Mubarak, A. A., Cao, H. y Zhang, W. (2020). Prediction of students’ early dropout based on their interaction logs in online learning environment. Interactive Learning Environments, 30(8), 1414-1433. https://doi.org/10.1080/10494820.2020.1727529 DOI: https://doi.org/10.1080/10494820.2020.1727529
Musso, M., Hernández, C. F. R. y Cascallar, E. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894. https://doi.org/10.1007/s10734-020-00520-7 DOI: https://doi.org/10.1007/s10734-020-00520-7
Nagy, M. y Molontay, R. (2023). Interpretable dropout prediction: towards XAI-Based Personalized intervention. International Journal Of Artificial Intelligence In Education. https://doi.org/10.1007/s40593-023-00331-8 DOI: https://doi.org/10.1007/s40593-023-00331-8
Nasa-Ngium, P., Nuankaew, W., Phanniphong, K., Jeefoo, P., y Nuankaew, P. (2023). Predictive Models for Dropout Rates Affected by COVID-19 Using Classification and Feature Selection Techniques. International Journal Of Engineering Trends And Technology, 71(7), 349-356. https://doi.org/10.14445/22315381/ijett-v71i7p233 DOI: https://doi.org/10.14445/22315381/IJETT-V71I7P233
Nieuwoudt, J. E. y Pedler, M. L. (2021). Student retention in higher education: Why students choose to remain at university. Journal of Student Affairs Research and Practice, 25(2). https://doi.org/10.1177/1521025120985228 DOI: https://doi.org/10.1177/1521025120985228
Okewu, E., Adewole, P., Misra, S., Maskeliūnas, R. y Damaševičius, R. (2021). Artificial Neural Networks for Educational Data Mining in Higher Education: A Systematic Literature Review. Applied Artificial Intelligence, 35(13), 983-1021. https://doi.org/10.1080/08839514.2021.1922847 DOI: https://doi.org/10.1080/08839514.2021.1922847
Okoye, K., Nganji, J. T., Escamilla, J. y Hosseini, S. (2024). Machine learning model (RG-DMML) and ensemble algorithm for prediction of students’ retention and graduation in education. Computers And Education. Artificial Intelligence, 6, 100205. https://doi.org/10.1016/j.caeai.2024.100205 DOI: https://doi.org/10.1016/j.caeai.2024.100205
Orellana, D., Segovia-García, N. y Cánovas, B. R. (2020). El abandono estudiantil en programas de educación superior virtual: revisión de literatura. Revista de la Educación Superior, 49(194), 45-62. https://doi.org/10.36857/resu.2020.194.1124
Palacios, C. A., Reyes-Suárez, J. A., Bearzotti, L., Leiva, V. y Marchant, C. (2021). Knowledge Discovery for Higher Education Student Retention Based on Data Mining: Machine learning Algorithms and Case Study in Chile. Entropy, 23(4), 485. https://doi.org/10.3390/e23040485 DOI: https://doi.org/10.3390/e23040485
Pêgo, J. P., Miguéis, V. L. y Soeiro, A. (2024). Students’ complex trajectories: exploring degree change and time to degree. International Journal Of Educational Technology In Higher Education, 21(1). https://doi.org/10.1186/s41239-024-00438-5 DOI: https://doi.org/10.1186/s41239-024-00438-5
Quecano, L. I. V., Rincón, A. G. y Moreno, S. B. (2024). Dropout in postgraduate programs: a underexplored phenomenon – a scoping review. Cogent Education, 11(1). https://doi.org/10.1080/2331186x.2024.2326705 DOI: https://doi.org/10.1080/2331186X.2024.2326705
Rodríguez, P., Villanueva, A., Dombrovskaia, L. y Valenzuela, J. P. (2023). A methodology to design, develop, and evaluate machine learning models for predicting dropout in school systems: the case of Chile. Education And Information Technologies, 28(8), 10103-10149. https://doi.org/10.1007/s10639-022-11515-5 DOI: https://doi.org/10.1007/s10639-022-11515-5
Salam, M. y Farooq, M.S. (2020). Does sociability quality of web-based collaborative learning information system influence students’ satisfaction and system usage? International Journal of Educational Technology in Higher Education, 17(1), 1-39. https://doi.org/10.1186/s41239-020-00189-z DOI: https://doi.org/10.1186/s41239-020-00189-z
Salas‐Pilco, S. Z. y Yang, Y. (2022). Artificial intelligence applications in Latin American higher education: a systematic review. International Journal Of Educational Technology In Higher Education, 19(1). https://doi.org/10.1186/s41239-022-00326-w DOI: https://doi.org/10.1186/s41239-022-00326-w
Saltos-García, P. A., Zambrano-Loja, C. M., Rodríguez-Carló, D. F. y Cobeña-Talledo, R. A. (2024). Análisis del impacto de las estrategias de seguimiento académico basados en la inteligencia artificial en el rendimiento de estudiantes universitarios en programas de administración. MQRInvestigar, 8(2), 1930-1949. https://doi.org/10.56048/mqr20225.8.2.2024.1930-1949 DOI: https://doi.org/10.56048/MQR20225.8.2.2024.1930-1949
Sani, N. S., Nafuri, A. F. M., Othman, Z. A., Nazri, M. Z. A. y Mohamad, K. N. (2020). Drop-Out Prediction in Higher Education Among B40 Students. International Journal Of Advanced Computer Science And Applications, 11(11). https://doi.org/10.14569/ijacsa.2020.0111169 DOI: https://doi.org/10.14569/IJACSA.2020.0111169
Segovia-García, N. (2022). Educación superior online. Human Review, 11(Monográfico), 1-13. https://doi.org/10.37467/revhuman.v11.3971 DOI: https://doi.org/10.37467/revhuman.v11.3971
Segovia-García, N. y Said-Hung, E.M. (2021). Factores de satisfacción de los alumnos en e-learning en Colombia. Revista Mexicana de Investigación Educativa, 26(89), 595-621. https://cutt.ly/LbUPghi
Segovia-García, N. y Martín-Caro, E. (2023). Cost Analysis in Online Teaching Using an Activity Map. Education Sciences, 13(5), 506. https://doi.org/10.3390/educsci13050506 DOI: https://doi.org/10.3390/educsci13050506
Segovia-García, N., Said-Hung, E. y Aguilera, F. J. G. (2022). Educación superior virtual en Colombia: factores asociados al abandono. Educación XX1, 25(1), 197-218. https://doi.org/10.5944/educxx1.30455 DOI: https://doi.org/10.5944/educxx1.30455
Shilbayeh, S. y Abonamah, A. A. (2021). Predicting Student Enrolments and Attrition Patterns in Higher Educational Institutions using Machine learning. The International Arab Journal Of Information Technology, 18(4). https://doi.org/10.34028/18/4/8 DOI: https://doi.org/10.34028/18/4/8
Sihare, S. R. (2024). Student Dropout Analysis in Higher Education and Retention by Artificial Intelligence and Machine learning. SN Computer Science, 5(2). https://doi.org/10.1007/s42979-023-02458-w DOI: https://doi.org/10.1007/s42979-023-02458-w
Singh, H., Kaur, B., Sharma, A. y Singh, A. (2023). Framework for suggesting corrective actions to help students intended at risk of low performance based on experimental study of college students using explainable machine learning model. Education And Information Technologies. https://doi.org/10.1007/s10639-023-12072-1 DOI: https://doi.org/10.1007/s10639-023-12072-1
Tinto, V. (1987). Leaving College: Rethinking the Causes and Cures of Student Attrition. University Of Chicago Press.
Tang, Z., Chen, L. y Jain, A. (2023). Exploring Individual Feature Importance in Student Persistence Prediction. Journal Of Higher Education Theory And Practice, 23(6). https://doi.org/10.33423/jhetp.v23i6.5957 DOI: https://doi.org/10.33423/jhetp.v23i6.5957
Tang, Z., Jain, A. y Colina, F. E. (2024). A Comparative Study of Machine learning Techniques for College Student Success Prediction. Journal Of Higher Education Theory And Practice, 24(1). https://doi.org/10.33423/jhetp.v24i1.6764 DOI: https://doi.org/10.33423/jhetp.v24i1.6764
Vidal, J., Corbí, R. G., Pozo-Rico, T., Costa, J. L. C. y Sánchez, T. (2022). Predictors of University Attrition: Looking for an Equitable and Sustainable Higher Education. Sustainability, 14(17), 10994. https://doi.org/10.3390/su141710994 DOI: https://doi.org/10.3390/su141710994
Villegas-Ch, W., Govea, J. y Revelo-Tapia, S. (2023). Improving Student Retention in Institutions of Higher Education through Machine learning: A Sustainable Approach. Sustainability, 15(19), 14512. https://doi.org/10.3390/su151914512 DOI: https://doi.org/10.3390/su151914512
Zayed, Y., Salman, Y. y Hasasneh, A. (2022). A Recommendation System for Selecting the Appropriate Undergraduate Program at Higher Education Institutions Using Graduate Student Data. Applied Sciences, 12(24), 12525. https://doi.org/10.3390/app122412525 DOI: https://doi.org/10.3390/app122412525
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ester Martín-Caro Alamo
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).