Artificial intelligence in the prediction of environmental and soil temperature in Ecuador

Authors

DOI:

https://doi.org/10.31637/epsir-2025-550

Keywords:

Time series, soil temperature, ambient temperature, artificial intelligence, forecasts, supervised algorithms, Ecuador, ARIMA

Abstract

Introduction: The main objective of the study was to analyze the probability and prediction for environmental and soil temperature in the coastal area of Manabí in Ecuador. Methodology: The methodology makes use of Box Jenkins ARIMA time series and comparison of means. The data was measured at 07:00 am, 12:00 pm and 18:00 pm, starting in January 2015 until December 2020. The data was analyzed and processed with the help of artificial intelligence incorporated into the RStudio software. Results: The results show that soil temperature is correlated with environmental temperature. Discussions: Goodness-of-fit tests for the coefficients and assumptions validated the observed and expected ARIMA model. Furthermore, the AIC and BIC criteria were used to choose the best predictive model. Conclusions: In conclusion, artificial intelligence identified that the prediction of ambient and soil temperatures are adequately simulated through an ARIMA(0,1,1)(0,1,1)[12] model, with trend and seasonality components, By affirming a non-stationary time series model, it is determined that temperature has a small variability for each period of time, but increasing, and in the future this climatic factor will probably become a determinant of global warming.

Downloads

Download data is not yet available.

Author Biographies

Ángel Ramón Sabando-García, Pontificia Universidad Católica del Ecuador- Sede Santo Domingo (PUCESD)

Master in Statistics; Educational Management and Agricultural Engineering. He works as a research professor at the Pontificia Universidad Católica del Ecuador - Santo Domingo Campus (PUCESD) in Ecuador and is a member of the Planning, Innovation and Financial Modeling Applied Research Group. During his career as a researcher he has published articles in the area of ​​mathematics and statistics, financial modeling, management, agricultural and finance ethics in national and international journals.

Mikel Ugando Peñate, Pontificia Universidad Católica del Ecuador- Sede Santo Domingo (PUCESD)

Doctor in Economics from the Santiago de Compostela University, Spain and Master in Accounting and Finance. He works as a research professor at the Pontificia Universidad Católica del Ecuador - Santo Domingo Campus (PUCESD) in Ecuador and coordinates the Planning, Innovation and Financial Modeling Applied Research Group. He currently coordinates national projects regarding ethical finance and Christian values, as well as the impact of climate change on agricultural production.

Reinaldo Armas Herrera, Universidad Técnica Particular de Loja

Ph.D. in Economics from the University of Las Palmas de Gran Canarias (ULPG), Spain. Master in Finance and Economist from the ULPGC. He is currently a research professor at the Department of Business Sciences, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador. In his role as a researcher he has specialized in the areas of finance, intellectual capital, university education and ethical finance, publishing articles in national and international journals of great impact.

Angel Alexander Higuerey Gómez, Universidad Técnica Particular de Loja

Doctor in Economics from the University of Las Palmas de Gran Canarias, Spain. Master and Specialist in Tax Law from the Santa María University, Venezuela. Graduate in Administration from the Universidad de Oriente, Venezuela. He currently works as a research professor at UTPL, Ecuador. Recognized researcher belonging to the Experimental Institute of Humanistic, Economic and Social Research (IEXIHES) of the University of Los Andes, Venezuela and the GESCONT research group of the UTPL.

Néstor Leopoldo Tarazona Meza, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López

Professor at the Manabí Agricultural Polytechnic Higher School, in the agricultural engineering degree, meteorology subject. Master in Agricultural Engineering.

Pierina D'Elia Di Michele, Universidad Técnica Particular de Loja

PhD in Education from the Rafael María Baralt University, Venezuela, Graduate in Comprehensive Education, Master in Educational Sciences and Master in Robinsonian Education from UNESR, Venezuela. She is currently a research professor in the Department of Philosophy, Arts and Humanities of the UTPL, Ecuador. She is the promoter of the Research Line: ACPTS-UNESR and member of the EDUFAM-UTPL research group contributing to the Christian Values ​​line.

Elvia Rosalía Inga Llanez, Universidad Técnica Particular de Loja

Master in Accounting and Auditing from the University of Santiago de Chile, has a Diploma in Management Auditing from the University of Santiago de Chile, and is a Commercial Engineer and Graduate in Administration from the Catholic University of Cuenca. He is currently a research professor at the Department of Business Sciences at UTPL and a member of the GESCONT research group.

References

Aaishah-Radziah, Bt., Fadhilah, Y. y Ibrahim-Lawal, K. (2015). Temporal Dynamics of Trend in Relative Humidity with RH-SARIMA Model. Modern Applied Science, 9(3), 281-290. http://dx.doi.org/10.5539/mas.v9n3p281 DOI: https://doi.org/10.5539/mas.v9n3p281

Abdul-Lateef, B. y Naheem, A. (2021). Sea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble Ocean-Atmospheric processes on models’ accuracy. Geomatics, Natural Hazards and Risk, 12(1), 653-674. https://doi.org/10.1080/19475705.2021.1887372 DOI: https://doi.org/10.1080/19475705.2021.1887372

Afrifa-Yamoah, E. (2015). Application of ARIMA Models in Forecasting Monthly Average Surface Temperature of Brong Ahafo Region of Ghana. International Journal of Statistics and Applications, 5(5), 237-246. Doi: 10.5923/j.statistics.20150505.08

Alaa-Ali, S. y Dmitry, K. (2023). Verification of MIKE 11-NAM Model for runoff modeling using ANN, FIS, and ARIMA methods in poorly studied basin. E3S Web of Conferences, 401, 1-10. https://doi.org/10.1051/e3sconf/202340101035 DOI: https://doi.org/10.1051/e3sconf/202340101035

Antoinette-Marie, R. y Sigrid, R. (2022). Using artificial intelligence models and degree-days method to estimate the heat consumption evolution of a building stock until 2050: A case study in a temperate climate of the Northern part of Europe. Cleaner and Responsible Consumption, 5, 100069. https://doi.org/10.1016/j.clrc.2022.100069 DOI: https://doi.org/10.1016/j.clrc.2022.100069

Box, G. E., Jenkins, G. M., Reinsel, G. C. y Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.

Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Inference: A Practical Information-Theoretic Approach. 2a edición, Springer-Verlag, Nueva York. http://dx.doi.org/10.1007/b97636 DOI: https://doi.org/10.1007/b97636

Coutinho, E., Madeira, J., Silva, R., Oliveira, E. y Delgado, A. (2023). Application of a Computational Hybrid Model to Estimate and Filling Gaps for Meteorological Time Series. Revista Brasileira De Meteorologia, 38, 1-19. https://doi.org/10.1590/0102-778638220030 DOI: https://doi.org/10.1590/0102-778638220030

Dabral, P. & Murry, M. (2017). Modelling and forecasting of rainfall time series using SARIMA. Environ. Proces, 4, 399-419. https://doi.org/10.1007/s40710-017-0226-y DOI: https://doi.org/10.1007/s40710-017-0226-y

Danandeh-Mehr, A., Ghadimi, S. y Marttila, H. (2022). A new evolutionary time series model for streamflow forecasting in boreal lake-river systems. Theor Appl Climatol, 148, 255–268. https://doi.org/10.1007/s00704-022-03939-3 DOI: https://doi.org/10.1007/s00704-022-03939-3

Dehbalaei, F., Azari, A. y Akhtari, A. (2023). Development of a linear–nonlinear hybrid special model to predict monthly runoff in a catchment area and evaluate its performance with novel machine learning methods. Appl Water Sci 13, 118. https://doi.org/10.1007/s13201-023-01917-2 DOI: https://doi.org/10.1007/s13201-023-01917-2

Dimri, T., Ahmad, S. y Sharif, M. (2020). Time series analysis of climate variables using seasonal ARIMA approach. J Earth Syst Sci., 129, 149. https://doi.org/10.1007/s12040-020-01408-x DOI: https://doi.org/10.1007/s12040-020-01408-x

Farsi, M., Hosahalli, D., Manjunatha, R., Gad, I. y Ghoneim, O. (2020). Parallel genetic algorithms for optimizing the SARIMA model for better forecasting of the NCDC weather data. Alexandria Engineering Journal, 60(1), 1299–1316. https://doi.org/10.1016/j.aej.2020.10.052 . DOI: https://doi.org/10.1016/j.aej.2020.10.052

Fu, Y., Zhou X., Zhou, D., Li, J. y Zhang, W. (2019). Estimation of sea level variability in the South China Sea from satellite altimetry and tide gauge data. Advances in Space Research, 68(2), 523-533. https://doi.org/10.1016/j.asr.2019.07.001 DOI: https://doi.org/10.1016/j.asr.2019.07.001

Fu, Y., Zhou, X., Sun, W. y Tang, Q. (2019). Hybrid model combining empirical mode decomposition, singular spectrum analysis, and least squares for satellite-derived sea-level anomaly prediction. International journal of remote sensing, 40(20), 7817-7829. https://doi.org/10.1080/01431161.2019.1606959 DOI: https://doi.org/10.1080/01431161.2019.1606959

Gokul-Krishnan B., Mehta, V. y Rai, V. N. (2023). Stochastic modelling and forecasting of relative humidity and wind speed for different zones of Kerala. MAUSAM, 74(4), 1053-1064. https://doi.org/10.54302/mausam.v74i4.5603 DOI: https://doi.org/10.54302/mausam.v74i4.5603

Guo, J., Zhang, L. y Guo, R. (2023). Relative humidity prediction with covariates and error correction based on SARIMA-EG-ECM model. Model. Earth Syst. Environ, 9, 4493-4505. https://doi.org/10.1007/s40808-023-01738-x DOI: https://doi.org/10.1007/s40808-023-01738-x

Hosseinzadeh, P., Nassar, A., Boubrahimi, S.F. y Hamdi, S.M. (2023). ML-Based Streamflow Prediction in the Upper Colorado River Basin Using Climate Variables Time Series Data. Hydrology, 10(2), 29. https://doi.org/10.3390/hydrology10020029 DOI: https://doi.org/10.3390/hydrology10020029

Hu, Y., Wang, N., Liu, S., Jiang, Q. y Zhang, N. (2021). Research on Application of Time Series Model and LSTM Model in Water Quality Prediction. Journal of Chinese Computer Systems, 42(8), 1569-1573.

Kheimi, M., Almadani, M. y Zounemat-Kermani, M. (2023). Stochastic (S[ARIMA]), shallow (NARnet, NAR-GMDH, OS-ELM), and deep learning (LSTM, Stacked-LSTM, CNN-GRU) models, application to river flow forecasting. Acta Geophys, 72, 2679–2693 https://doi.org/10.1007/s11600-023-01157-7 DOI: https://doi.org/10.1007/s11600-023-01157-7

Kim, T., Shin, J.Y., Kim, H., Kim, S. y Heo, J.H. (2019). The Use of Large-Scale Climate Indices in Monthly Reservoir Inflow Forecasting and Its Application on Time Series and Artificial Intelligence Models. Water, 11(2), 374. https://doi.org/10.3390/w11020374 DOI: https://doi.org/10.3390/w11020374

Mishra, P., Al khatib, A.M.G., Mohamad Alshaib, B., Binita, K., Tiwari, S., Singh, A. P., Yadav, S., Sharma, D. y Kumari, P. (2023). Forecasting Potato Production in Major South Asian Countries: a Comparative Study of Machine Learning and Time Series Models. Potato Research. https://doi.org/10.1007/s11540-023-09683-z DOI: https://doi.org/10.1007/s11540-023-09683-z

Mishra, P., Mishra, P. C., Fatih, C., Vani, G. K., Lavrod, J. M., Jain, V., Dubey, A. y Choudhary, A. K. (2021). Modeling and forecasting of metrological factors using ARCH process under different errors distribution specification. MAUSAM, 72(2), 301–312. https://doi.org/10.54302/mausam.v72i2.618 DOI: https://doi.org/10.54302/mausam.v72i2.618

Nyatuame, M. y Agodzo, S. K. (2018). Stochastic ARIMA model for annual rainfall and maximum temperature forecasting over Tordzie watershed in Ghana. Journal of Water and Land Development, 37(4), 127-140, DOI 10.2478/jwld-2018-0032 DOI: https://doi.org/10.2478/jwld-2018-0032

Ortega-Ballesteros, A., Muñoz-Rodríguez, D., Aguilera-Ureña, M-J., De los Santos-Zarco, F.J. y Perea-Moreno, A.J. (2023). Application of Time-Controlled Critical Point in Pressure Reducing Valves: A Case Study in North Spain. Applied Sciences, 13(10), 5845. https://doi.org/10.3390/app13105845 DOI: https://doi.org/10.3390/app13105845

Pradeep, Kumar., Arti-Choudhary, P., Rajendra, P. y Sudhir-Kumar, S. (2022). Multiple crop yield estimation and forecasting using MERRA-2 model, satellite-gauge and MODIS satellite data by time series and regression modelling approach. Geocarto International, 37(27), 16590-16619, https://doi.org/10.1080/10106049.2022.2112301 DOI: https://doi.org/10.1080/10106049.2022.2112301

Sabando-García, Á., Ugando-Peñate, M., Armas-Herrera, R., Higuerey-Gómez, Á., Espín Estrella, G. y Villalón-Peñate, A. (2022). Modelación econométrica y estocástica en los pronósticos de ventas de jengibre en Ecuador. Ingeniería Investigación y Desarrollo, 22(1), 25-43. https://doi.org/10.19053/1900771X.v22.n1.2022.14453 DOI: https://doi.org/10.19053/1900771X.v22.n1.2022.14453

Sagarika, R., Ajay-Kumar, T. y Prosun, B. (2023). A geospatial approach for understanding the spatio-temporal variability and projection of future trend in groundwater availability in the Tawi basin, Jammu, India. Groundwater for Sustainable Development, 21, 100912. https://doi.org/10.1016/j.gsd.2023.100912 DOI: https://doi.org/10.1016/j.gsd.2023.100912

Shangguan, S., Lin, H., Wei, Y. y Tang, C. (2022). Spatiotemporal Modes Characteristics and SARIMA Prediction of Total Column Water Vapor over China during 2002–2022 Based on AIRS Dataset. Atmosphere, 13(6), 885. https://doi.org/10.3390/atmos13060885 DOI: https://doi.org/10.3390/atmos13060885

Swain, S., Mishra, S.K., Pandey, A. y Dayal, D. (2022). A Stochastic Model-Based Monthly Rainfall Prediction Over a Large River Basin. In: Yadav, B., Mohanty, M.P., Pandey, A., Singh, V.P., Singh, R.D. (eds) Sustainability of Water Resources. Water Science and Technology Library, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-031-13467-8_9 DOI: https://doi.org/10.1007/978-3-031-13467-8_9

Tang, C, Tong, Z., Wei, Y., Wu, X., Tian, X. y Yang, J. (2023). Time–Frequency Characteristics and SARIMA Forecasting of Atmospheric Water Vapor in East Asia. Atmosphere, 14(5). 899. https://doi.org/10.3390/atmos14050899 DOI: https://doi.org/10.3390/atmos14050899

Tang, C., Zhu, F., Wei, Y., Tian, X., Yang, J. y Zhao, F. (2023). Study of Time-Frequency Domain Characteristics of the Total Column Ozone in China Based on Wavelet Analysis. Atmosphere, 14(6), 941. https://doi.org/10.3390/atmos14060941 DOI: https://doi.org/10.3390/atmos14060941

Ugando-Peñate, M., Villalón-Peñate, A., Sabando-García, Á., Celi-Pinza, D., Pilay- Toala , F. y Racines-Cabrera, A. (2021). Modelización financiera aplicada en empresas del sector manufacturero en la ciudad de Santo Domingo de los Tsáchilas, Ecuador. Revista De La Universidad Del Zulia, 12(34), 8-28. https://doi.org/10.46925//rdluz.34.02 DOI: https://doi.org/10.46925//rdluz.34.02

Valipour, M. (2015). Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol. Appl., 22, 592- 598. https://doi.org/10.1002/met.1491 DOI: https://doi.org/10.1002/met.1491

Wang, H., Huang, J., Zhou, H., Zhao, L. y Yuan, Y. (2019). An Integrated Variational Mode Decomposition and ARIMA Model to Forecast Air Temperature. Sustainability, 11(15), 4018. https://doi.org/10.3390/su11154018 DOI: https://doi.org/10.3390/su11154018

Wu, J., Chen, X. y Chang, T. (2020). Correlations between hydrological drought and climate indices with respect to the impact of a large reservoir. Theoretical and Applied Climatology, 139, 727-739. https://doi.org/10.1007/s00704-019-02991-w DOI: https://doi.org/10.1007/s00704-019-02991-w

Xiaowei, Z., Ping, Z., Liwei, Z. y Gaoyang, Z. (2022 A Comparison of Multivariate and Univariate Time Series Models Applied in Tree Sap Flux Analyses. Forest Science, 68(5-6), 473-486, https://doi.org/10.1093/forsci/fxac027 DOI: https://doi.org/10.1093/forsci/fxac027

Yang, R. y Xing, B. (2022). Evidence for Intensification in Meteorological Drought since the 1950s and Recent Dryness–Wetness Forecasting in China. Atmosphere, 13(5), 745. https://doi.org/10.3390/atmos13050745 DOI: https://doi.org/10.3390/atmos13050745

Yi-Hui, P., Hong-Bo, W., Jian-Jian, Z. y De-Yong, S. (2020). Analysis and Prediction of Hydraulic Support Load Based on Time Series Data Modeling. Geofluids, 2020 (8851475), 1-15. https://doi.org/10.1155/2020/8851475 DOI: https://doi.org/10.1155/2020/8851475

Zolghadr-Asli, B., Enayati, M., Pourghasemi, H.R., Jahromi, M.N. y Tiefenbacher, J. (2021). A linear/non-linear hybrid time-series model to investigate the depletion of inland water bodies. Environ Dev Sustain, 23, 10727-10742. https://doi.org/10.1007/s10668-020-01081-6 DOI: https://doi.org/10.1007/s10668-020-01081-6

Published

2024-11-25

How to Cite

Sabando-García, Ángel R., Ugando Peñate, M., Armas Herrera, R., Higuerey Gómez, A. A., Tarazona Meza, N. L., D'Elia Di Michele, P., & Inga Llanez, E. R. (2024). Artificial intelligence in the prediction of environmental and soil temperature in Ecuador. European Public & Social Innovation Review, 10, 1–17. https://doi.org/10.31637/epsir-2025-550

Issue

Section

Cover articles