Artificial intelligence in the prediction of environmental and soil temperature in Ecuador
DOI:
https://doi.org/10.31637/epsir-2025-550Keywords:
Time series, soil temperature, ambient temperature, artificial intelligence, forecasts, supervised algorithms, Ecuador, ARIMAAbstract
Introduction: The main objective of the study was to analyze the probability and prediction for environmental and soil temperature in the coastal area of Manabí in Ecuador. Methodology: The methodology makes use of Box Jenkins ARIMA time series and comparison of means. The data was measured at 07:00 am, 12:00 pm and 18:00 pm, starting in January 2015 until December 2020. The data was analyzed and processed with the help of artificial intelligence incorporated into the RStudio software. Results: The results show that soil temperature is correlated with environmental temperature. Discussions: Goodness-of-fit tests for the coefficients and assumptions validated the observed and expected ARIMA model. Furthermore, the AIC and BIC criteria were used to choose the best predictive model. Conclusions: In conclusion, artificial intelligence identified that the prediction of ambient and soil temperatures are adequately simulated through an ARIMA(0,1,1)(0,1,1)[12] model, with trend and seasonality components, By affirming a non-stationary time series model, it is determined that temperature has a small variability for each period of time, but increasing, and in the future this climatic factor will probably become a determinant of global warming.
Downloads
References
Aaishah-Radziah, Bt., Fadhilah, Y. y Ibrahim-Lawal, K. (2015). Temporal Dynamics of Trend in Relative Humidity with RH-SARIMA Model. Modern Applied Science, 9(3), 281-290. http://dx.doi.org/10.5539/mas.v9n3p281 DOI: https://doi.org/10.5539/mas.v9n3p281
Abdul-Lateef, B. y Naheem, A. (2021). Sea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble Ocean-Atmospheric processes on models’ accuracy. Geomatics, Natural Hazards and Risk, 12(1), 653-674. https://doi.org/10.1080/19475705.2021.1887372 DOI: https://doi.org/10.1080/19475705.2021.1887372
Afrifa-Yamoah, E. (2015). Application of ARIMA Models in Forecasting Monthly Average Surface Temperature of Brong Ahafo Region of Ghana. International Journal of Statistics and Applications, 5(5), 237-246. Doi: 10.5923/j.statistics.20150505.08
Alaa-Ali, S. y Dmitry, K. (2023). Verification of MIKE 11-NAM Model for runoff modeling using ANN, FIS, and ARIMA methods in poorly studied basin. E3S Web of Conferences, 401, 1-10. https://doi.org/10.1051/e3sconf/202340101035 DOI: https://doi.org/10.1051/e3sconf/202340101035
Antoinette-Marie, R. y Sigrid, R. (2022). Using artificial intelligence models and degree-days method to estimate the heat consumption evolution of a building stock until 2050: A case study in a temperate climate of the Northern part of Europe. Cleaner and Responsible Consumption, 5, 100069. https://doi.org/10.1016/j.clrc.2022.100069 DOI: https://doi.org/10.1016/j.clrc.2022.100069
Box, G. E., Jenkins, G. M., Reinsel, G. C. y Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Inference: A Practical Information-Theoretic Approach. 2a edición, Springer-Verlag, Nueva York. http://dx.doi.org/10.1007/b97636 DOI: https://doi.org/10.1007/b97636
Coutinho, E., Madeira, J., Silva, R., Oliveira, E. y Delgado, A. (2023). Application of a Computational Hybrid Model to Estimate and Filling Gaps for Meteorological Time Series. Revista Brasileira De Meteorologia, 38, 1-19. https://doi.org/10.1590/0102-778638220030 DOI: https://doi.org/10.1590/0102-778638220030
Dabral, P. & Murry, M. (2017). Modelling and forecasting of rainfall time series using SARIMA. Environ. Proces, 4, 399-419. https://doi.org/10.1007/s40710-017-0226-y DOI: https://doi.org/10.1007/s40710-017-0226-y
Danandeh-Mehr, A., Ghadimi, S. y Marttila, H. (2022). A new evolutionary time series model for streamflow forecasting in boreal lake-river systems. Theor Appl Climatol, 148, 255–268. https://doi.org/10.1007/s00704-022-03939-3 DOI: https://doi.org/10.1007/s00704-022-03939-3
Dehbalaei, F., Azari, A. y Akhtari, A. (2023). Development of a linear–nonlinear hybrid special model to predict monthly runoff in a catchment area and evaluate its performance with novel machine learning methods. Appl Water Sci 13, 118. https://doi.org/10.1007/s13201-023-01917-2 DOI: https://doi.org/10.1007/s13201-023-01917-2
Dimri, T., Ahmad, S. y Sharif, M. (2020). Time series analysis of climate variables using seasonal ARIMA approach. J Earth Syst Sci., 129, 149. https://doi.org/10.1007/s12040-020-01408-x DOI: https://doi.org/10.1007/s12040-020-01408-x
Farsi, M., Hosahalli, D., Manjunatha, R., Gad, I. y Ghoneim, O. (2020). Parallel genetic algorithms for optimizing the SARIMA model for better forecasting of the NCDC weather data. Alexandria Engineering Journal, 60(1), 1299–1316. https://doi.org/10.1016/j.aej.2020.10.052 . DOI: https://doi.org/10.1016/j.aej.2020.10.052
Fu, Y., Zhou X., Zhou, D., Li, J. y Zhang, W. (2019). Estimation of sea level variability in the South China Sea from satellite altimetry and tide gauge data. Advances in Space Research, 68(2), 523-533. https://doi.org/10.1016/j.asr.2019.07.001 DOI: https://doi.org/10.1016/j.asr.2019.07.001
Fu, Y., Zhou, X., Sun, W. y Tang, Q. (2019). Hybrid model combining empirical mode decomposition, singular spectrum analysis, and least squares for satellite-derived sea-level anomaly prediction. International journal of remote sensing, 40(20), 7817-7829. https://doi.org/10.1080/01431161.2019.1606959 DOI: https://doi.org/10.1080/01431161.2019.1606959
Gokul-Krishnan B., Mehta, V. y Rai, V. N. (2023). Stochastic modelling and forecasting of relative humidity and wind speed for different zones of Kerala. MAUSAM, 74(4), 1053-1064. https://doi.org/10.54302/mausam.v74i4.5603 DOI: https://doi.org/10.54302/mausam.v74i4.5603
Guo, J., Zhang, L. y Guo, R. (2023). Relative humidity prediction with covariates and error correction based on SARIMA-EG-ECM model. Model. Earth Syst. Environ, 9, 4493-4505. https://doi.org/10.1007/s40808-023-01738-x DOI: https://doi.org/10.1007/s40808-023-01738-x
Hosseinzadeh, P., Nassar, A., Boubrahimi, S.F. y Hamdi, S.M. (2023). ML-Based Streamflow Prediction in the Upper Colorado River Basin Using Climate Variables Time Series Data. Hydrology, 10(2), 29. https://doi.org/10.3390/hydrology10020029 DOI: https://doi.org/10.3390/hydrology10020029
Hu, Y., Wang, N., Liu, S., Jiang, Q. y Zhang, N. (2021). Research on Application of Time Series Model and LSTM Model in Water Quality Prediction. Journal of Chinese Computer Systems, 42(8), 1569-1573.
Kheimi, M., Almadani, M. y Zounemat-Kermani, M. (2023). Stochastic (S[ARIMA]), shallow (NARnet, NAR-GMDH, OS-ELM), and deep learning (LSTM, Stacked-LSTM, CNN-GRU) models, application to river flow forecasting. Acta Geophys, 72, 2679–2693 https://doi.org/10.1007/s11600-023-01157-7 DOI: https://doi.org/10.1007/s11600-023-01157-7
Kim, T., Shin, J.Y., Kim, H., Kim, S. y Heo, J.H. (2019). The Use of Large-Scale Climate Indices in Monthly Reservoir Inflow Forecasting and Its Application on Time Series and Artificial Intelligence Models. Water, 11(2), 374. https://doi.org/10.3390/w11020374 DOI: https://doi.org/10.3390/w11020374
Mishra, P., Al khatib, A.M.G., Mohamad Alshaib, B., Binita, K., Tiwari, S., Singh, A. P., Yadav, S., Sharma, D. y Kumari, P. (2023). Forecasting Potato Production in Major South Asian Countries: a Comparative Study of Machine Learning and Time Series Models. Potato Research. https://doi.org/10.1007/s11540-023-09683-z DOI: https://doi.org/10.1007/s11540-023-09683-z
Mishra, P., Mishra, P. C., Fatih, C., Vani, G. K., Lavrod, J. M., Jain, V., Dubey, A. y Choudhary, A. K. (2021). Modeling and forecasting of metrological factors using ARCH process under different errors distribution specification. MAUSAM, 72(2), 301–312. https://doi.org/10.54302/mausam.v72i2.618 DOI: https://doi.org/10.54302/mausam.v72i2.618
Nyatuame, M. y Agodzo, S. K. (2018). Stochastic ARIMA model for annual rainfall and maximum temperature forecasting over Tordzie watershed in Ghana. Journal of Water and Land Development, 37(4), 127-140, DOI 10.2478/jwld-2018-0032 DOI: https://doi.org/10.2478/jwld-2018-0032
Ortega-Ballesteros, A., Muñoz-Rodríguez, D., Aguilera-Ureña, M-J., De los Santos-Zarco, F.J. y Perea-Moreno, A.J. (2023). Application of Time-Controlled Critical Point in Pressure Reducing Valves: A Case Study in North Spain. Applied Sciences, 13(10), 5845. https://doi.org/10.3390/app13105845 DOI: https://doi.org/10.3390/app13105845
Pradeep, Kumar., Arti-Choudhary, P., Rajendra, P. y Sudhir-Kumar, S. (2022). Multiple crop yield estimation and forecasting using MERRA-2 model, satellite-gauge and MODIS satellite data by time series and regression modelling approach. Geocarto International, 37(27), 16590-16619, https://doi.org/10.1080/10106049.2022.2112301 DOI: https://doi.org/10.1080/10106049.2022.2112301
Sabando-García, Á., Ugando-Peñate, M., Armas-Herrera, R., Higuerey-Gómez, Á., Espín Estrella, G. y Villalón-Peñate, A. (2022). Modelación econométrica y estocástica en los pronósticos de ventas de jengibre en Ecuador. Ingeniería Investigación y Desarrollo, 22(1), 25-43. https://doi.org/10.19053/1900771X.v22.n1.2022.14453 DOI: https://doi.org/10.19053/1900771X.v22.n1.2022.14453
Sagarika, R., Ajay-Kumar, T. y Prosun, B. (2023). A geospatial approach for understanding the spatio-temporal variability and projection of future trend in groundwater availability in the Tawi basin, Jammu, India. Groundwater for Sustainable Development, 21, 100912. https://doi.org/10.1016/j.gsd.2023.100912 DOI: https://doi.org/10.1016/j.gsd.2023.100912
Shangguan, S., Lin, H., Wei, Y. y Tang, C. (2022). Spatiotemporal Modes Characteristics and SARIMA Prediction of Total Column Water Vapor over China during 2002–2022 Based on AIRS Dataset. Atmosphere, 13(6), 885. https://doi.org/10.3390/atmos13060885 DOI: https://doi.org/10.3390/atmos13060885
Swain, S., Mishra, S.K., Pandey, A. y Dayal, D. (2022). A Stochastic Model-Based Monthly Rainfall Prediction Over a Large River Basin. In: Yadav, B., Mohanty, M.P., Pandey, A., Singh, V.P., Singh, R.D. (eds) Sustainability of Water Resources. Water Science and Technology Library, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-031-13467-8_9 DOI: https://doi.org/10.1007/978-3-031-13467-8_9
Tang, C, Tong, Z., Wei, Y., Wu, X., Tian, X. y Yang, J. (2023). Time–Frequency Characteristics and SARIMA Forecasting of Atmospheric Water Vapor in East Asia. Atmosphere, 14(5). 899. https://doi.org/10.3390/atmos14050899 DOI: https://doi.org/10.3390/atmos14050899
Tang, C., Zhu, F., Wei, Y., Tian, X., Yang, J. y Zhao, F. (2023). Study of Time-Frequency Domain Characteristics of the Total Column Ozone in China Based on Wavelet Analysis. Atmosphere, 14(6), 941. https://doi.org/10.3390/atmos14060941 DOI: https://doi.org/10.3390/atmos14060941
Ugando-Peñate, M., Villalón-Peñate, A., Sabando-García, Á., Celi-Pinza, D., Pilay- Toala , F. y Racines-Cabrera, A. (2021). Modelización financiera aplicada en empresas del sector manufacturero en la ciudad de Santo Domingo de los Tsáchilas, Ecuador. Revista De La Universidad Del Zulia, 12(34), 8-28. https://doi.org/10.46925//rdluz.34.02 DOI: https://doi.org/10.46925//rdluz.34.02
Valipour, M. (2015). Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol. Appl., 22, 592- 598. https://doi.org/10.1002/met.1491 DOI: https://doi.org/10.1002/met.1491
Wang, H., Huang, J., Zhou, H., Zhao, L. y Yuan, Y. (2019). An Integrated Variational Mode Decomposition and ARIMA Model to Forecast Air Temperature. Sustainability, 11(15), 4018. https://doi.org/10.3390/su11154018 DOI: https://doi.org/10.3390/su11154018
Wu, J., Chen, X. y Chang, T. (2020). Correlations between hydrological drought and climate indices with respect to the impact of a large reservoir. Theoretical and Applied Climatology, 139, 727-739. https://doi.org/10.1007/s00704-019-02991-w DOI: https://doi.org/10.1007/s00704-019-02991-w
Xiaowei, Z., Ping, Z., Liwei, Z. y Gaoyang, Z. (2022 A Comparison of Multivariate and Univariate Time Series Models Applied in Tree Sap Flux Analyses. Forest Science, 68(5-6), 473-486, https://doi.org/10.1093/forsci/fxac027 DOI: https://doi.org/10.1093/forsci/fxac027
Yang, R. y Xing, B. (2022). Evidence for Intensification in Meteorological Drought since the 1950s and Recent Dryness–Wetness Forecasting in China. Atmosphere, 13(5), 745. https://doi.org/10.3390/atmos13050745 DOI: https://doi.org/10.3390/atmos13050745
Yi-Hui, P., Hong-Bo, W., Jian-Jian, Z. y De-Yong, S. (2020). Analysis and Prediction of Hydraulic Support Load Based on Time Series Data Modeling. Geofluids, 2020 (8851475), 1-15. https://doi.org/10.1155/2020/8851475 DOI: https://doi.org/10.1155/2020/8851475
Zolghadr-Asli, B., Enayati, M., Pourghasemi, H.R., Jahromi, M.N. y Tiefenbacher, J. (2021). A linear/non-linear hybrid time-series model to investigate the depletion of inland water bodies. Environ Dev Sustain, 23, 10727-10742. https://doi.org/10.1007/s10668-020-01081-6 DOI: https://doi.org/10.1007/s10668-020-01081-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ángel Ramón Sabando-García, Mikel Ugando Peñate; Reinaldo Armas Herrera (Autor de Correspondencia); Angel Alexander Higuerey Gómez, Néstor Leopoldo Tarazona Meza, Pierina D'Elia Di Michele, Elvia Rosalía Inga Llanez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).