The Evolution of Natural Language Processing and its Influence on Artificial Intelligence: A Review and Future Research Directions
DOI:
https://doi.org/10.31637/epsir-2025-782Keywords:
Natural Language Processing, Language Models, Machine Learning, Artificial Intelligence, Computational Infrastructure, Literature review, Renewable energy, Data science and analyticsAbstract
Introduction: This study reviews the significant developments in natural language processing (NLP) and its impact on artificial intelligence (AI), focusing on advancements in language models, computational infrastructures, and the integration of machine learning methods. Methodology: A systematic literature review was conducted using the PRISMA guidelines, targeting articles from 2022 to 2024. Web of Science with search terms like "natural language processing," "PNL”. Results: The review highlights the critical role of advanced language models such as GPT-4, BERT, and their variants in improving natural language understanding and generation, the importance of high-performance computing infrastructures, and the use of machine learning techniques to optimize NLP tasks. Discussions: The findings confirm the relevance of robust computational infrastructures and reveal new perspectives on the rapid evolution and broader adoption of NLP techniques across various sectors. Conclusions: Continued investment in computational infrastructures and the development of advanced language models is essential. Future research should expand the study period, diversify languages, include grey literature, conduct longitudinal studies, and explore the ethical and privacy challenges in implementing NLP techniques.
Downloads
References
Adamopoulou, E. y Moussiades, L. (2020). An overview of chatbot technology. En IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 373-383). Springer, Cham. https://doi.org/10.1007/978-3-030-49186-4_31 DOI: https://doi.org/10.1007/978-3-030-49186-4_31
Akter, S., Michael, K., Uddin, M. R., McCarthy, G. y Rahman, M. (2022). Transforming business using digital innovations: The application of AI, blockchain, cloud and data analytics. Annals of Operations Research, 1-33. https://doi.org/10.1007/s10479-020-03620-w DOI: https://doi.org/10.1007/s10479-020-03620-w
Awan, U., Shamim, S., Khan, Z., Zia, N. U., Shariq, S. M., y Khan, M. N. (2021). Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technological Forecasting and Social Change, 168. https://doi.org/10.1016/j.techfore.2021.120766 DOI: https://doi.org/10.1016/j.techfore.2021.120766
Barman, P., Dutta, L., Bordoloi, S., Kalita, A., Buragohain, P., Bharali, S. y Azzopardi, B. (2023). Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches. Renewable and Sustainable Energy Reviews, 183. https://doi.org/10.1016/j.rser.2023.113518 DOI: https://doi.org/10.1016/j.rser.2023.113518
Berger, J., Humphreys, A., Ludwig, S., Moe, W. W., Netzer, O., y Schweidel, D. A. (2020). Uniting the tribes: Using text for marketing insight. Journal of Marketing, 84(1), 1-25. https://doi.org/10.1177/0022242919873106 DOI: https://doi.org/10.1177/0022242919873106
Bojórquez, D. M. (2021). De redes neuronales recurrentes a modelos de lenguaje: la evolución del pln en la generación de textos. Publicación, 4, octubre de 2021. https://110.22201/dgtic.26832968e.2021.4.1 DOI: https://doi.org/10.22201/dgtic.26832968e.2021.4.1
Bolla, R., Bruschi, R., Davoli, F. y Cucchietti, F. (2010). Energy efficiency in the future internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Communications Surveys y Tutorials, 13(2), 223-244. https://doi.org/10.1109/SURV.2011.071410.00073 DOI: https://doi.org/10.1109/SURV.2011.071410.00073
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P. y Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901. https://Language models are few-shot learners. com
Cambria, E. y White, B. (2014). Jumping NLP curves: A review of natural language processing research. IEEE Computational intelligence magazine, 9(2), 48-57. https://doi.org/10.1109/MCI.2014.2307227 DOI: https://doi.org/10.1109/MCI.2014.2307227
Cedeno-Moreno, D. E., y Millan, A. (2023). Arquitectura de PLN aplicada al contexto de la salud mental. I+ D Tecnológico, 19(2), 24-29. https://doi.org/10.33412/idt.v19.2.3770 DOI: https://doi.org/10.33412/idt.v19.2.3770
Cedron, F., Carballal, A., Fernandez-Lozano, C., Munteanu, C. y Pazos, A. (2018). Infraestructure to support biomedical applications. https://doi.org/10.3390/mol2net-04-05507 DOI: https://doi.org/10.3390/mol2net-04-05507
Clark, K., Luong, M. T., Le, Q. V., y Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv, 2003.10555. https://doi.org/10.48550/arXiv.2003.10555
Davenport, T. H. y Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116. https://blockqai.com
Deng, L. y Liu, Y. (Eds.). (2018). Deep learning in natural language processing. Springer. https://doi.org/10.1007/978-981-10-520-5
Devlin, J., Chang, M. W., Lee, K., y Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint, arXiv:1810.04805. https://doi.org/10.48550/arXiv.1810.04805
Ellis-Chadwick, F. y Chaffey, D. (2012). Digital marketing: strategy, implementation and practice. Pearson. https://lontar.ui.ac.id/detail?id=20419965
García-Martínez, J. A., Herrera-Villalobos, G. y Fallas-Vargas, M. A. (2021). Aprender conectados: Un estudio sobre las redes personales de aprendizaje de estudiantes universitarios. Educatio Siglo XXI, 39(2), 41-60. https://doi.org/10.6018/educatio.463821 DOI: https://doi.org/10.6018/educatio.463821
Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic roadmap toward Industry 4.0. Journal of Manufacturing Technology Management, 29(6), 910-936. https://doi.org/10.1108/JMTM-02-2018-0057 DOI: https://doi.org/10.1108/JMTM-02-2018-0057
Gill, S. S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M. y Buyya, R. (2022). Quantum computing: A taxonomy, systematic review and future directions. Software: Practice and Experience, 52(1), 66-114. https://doi.org/10.1002/spe.3039 DOI: https://doi.org/10.1002/spe.3039
Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., y Abraham, A. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514. https://doi.org/10.1016/j.iot.2022.100514 DOI: https://doi.org/10.1016/j.iot.2022.100514
Giraldo Forero, A. F. y Orozco Duque, A. F. (2023). Evolución del procesamiento natural del lenguaje. Tecnológicas, 26(56). https://doi.org/10.22430/22565337.2687 DOI: https://doi.org/10.22430/22565337.2687
Gómez, J. M. (2008). InTiMe: plataforma de integración de recursos de PLN. Procesamiento Del Lenguaje Natural, 40.
Goyal, P., Pandey, S. y Jain, K. (2018). Deep learning for natural language processing. Apress. https://doi.org/10.1007/978-1-4842-3685-7 DOI: https://doi.org/10.1007/978-1-4842-3685-7
Hannigan, T. R., Haans, R. F., Vakili, K., Tchalian, H., Glaser, V. L., Wang, M. S., ... y Jennings, P. D. (2019). Topic modeling in management research: Rendering new theory from textual data. Academy of Management Annals, 13(2), 586-632. https://doi.org/10.5465/annals.2017.0099 DOI: https://doi.org/10.5465/annals.2017.0099
Hartmann, J., Huppertz, J., Schamp, C. y Heitmann, M. (2019). Comparing automated text classification methods. International Journal of Research in Marketing, 36(1), 20-38. https://doi.org/10.1016/j.ijresmar.2018.09.009 DOI: https://doi.org/10.1016/j.ijresmar.2018.09.009
Hirschberg, J. y Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261-266. https://doi.org/10.1126/science.aaa8685 DOI: https://doi.org/10.1126/science.aaa8685
Huang, S., Dong, L., Wang, W., Hao, Y., Singhal, S., Ma, S., Lv, T., Cui, L., Mohammed, O. K. y Patra, B. (2024). Language is not all you need: Aligning perception with language models. Advances in Neural Information Processing Systems, 36. https://proceedings.neurips.com
Ivanovski, K., Hailemariam, A. y Smyth, R. (2021). The effect of renewable and non-renewable energy consumption on economic growth: Non-parametric evidence. Journal of Cleaner Production, 286. https://doi.org/10.1016/j.jclepro.2020.124956 DOI: https://doi.org/10.1016/j.jclepro.2020.124956
Jing, K. y Xu, J. (2019). A survey on neural network language models. ArXiv Preprint ArXiv:1906.03591. https://doi.org/10.48550/arXiv.1906.03591
Jurafsky, D. y Martin, J. H. (2019). Speech and Language Processing (3ª ed.). Prentice Hall. https://web.stanford.edu/~jurafsky/slp3
Ladeira, A. P. (2010). Processamento de linguagem natural: caracterização da produção científica dos pesquisadores brasileiros [Tesis de doctorado]. http://hdl.handle.net/1843/ECID-8B3Q6C
Lee, D., Hosanagar, K. y Nair, H. S. (2018). Advertising content and consumer engagement on social media: Evidence from Facebook. Management Science, 64(11), 5105-5131. https://doi.org/10.1287/mnsc.2017.2902 DOI: https://doi.org/10.1287/mnsc.2017.2902
Li, Y. y Xie, Y. (2020). Is a picture worth a thousand words? An empirical study of image content and social media engagement. Journal of Marketing Research, 57(1), 1-19. https://doi.org/10.1177/0022243719881113 DOI: https://doi.org/10.1177/0022243719881113
Liu, B. (2022). Sentiment analysis and opinion mining. Springer Nature. DOI: https://doi.org/10.1007/978-3-031-02145-9 DOI: https://doi.org/10.1007/978-3-031-02145-9
Liu, X., Shin, H. y Burns, A. C. (2021). Examining the impact of luxury brand's social media marketing on customer engagement: Using big data analytics and natural language processing. Journal of Business Research, 125, 815-826. https://doi.org/10.1016/j.jbusres.2019.04.042 DOI: https://doi.org/10.1016/j.jbusres.2019.04.042
Longoni, C. y Cian, L. (2022). Artificial intelligence in utilitarian vs. hedonic contexts: The “word-of-machine” effect. Journal of Marketing, 86(1), 91-108. https://doi.org/10.1177/0022242920957347 DOI: https://doi.org/10.1177/0022242920957347
López, J., Sánchez-Sánchez, C. y Villatoro-Tello, E. (2014). Laboratorio en línea para el procesamiento automático de documentos. RCS, 72, 1-10. https://rcs.cic.ipn.mx/2014_72/RCS_72_2014.pdf DOI: https://doi.org/10.13053/rcs-72-1-2
Marr, B. (2020). Tech Trends in Practice: The 25 technologies that are driving the 4ª Industrial Revolution. John Wiley y Sons.
Martínez, P., García-Serrano, A. y de Miguel Castaño, A. (1999). Estructuración del Conocimiento para la Interpretación de Textos y su Aplicación al Diseño de Esquemas Conceptuales de Bases de Datos. Inteligencia Artificial, 3(8), 36-58. DOI: https://doi.org/10.4114/ia.v3i8.645
Melluso, N., Grangel-González, I. y Fantoni, G. (2022). Enhancing industry 4.0 standards interoperability via knowledge graphs with natural language processing. Computers in Industry, 140. https://doi.org/10.1016/j.compind.2022.103676 DOI: https://doi.org/10.1016/j.compind.2022.103676
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. y PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine, 151(4), 264-269. https://doi.org/10.1016/j.ijsu.2010.02.007 DOI: https://doi.org/10.7326/0003-4819-151-4-200908180-00135
Nagda, K., Mukherjee, A., Shah, M., Mulchandani, P. y Kurup, L. (2020). Ascent of pre-trained state-of-the-art language models. Advanced Computing Technologies and Applications: Proceedings of 2nd International Conference on Advanced Computing Technologies and Applications—ICACTA 2020, 269–280. https://doi.org/10.1007/978-981-15-3242-9_26 DOI: https://doi.org/10.1007/978-981-15-3242-9_26
Plangger, K., Grewal, D., de Ruyter, K. y Tucker, C. (2022). The future of digital technologies in marketing: A conceptual framework and an overview. Journal of the Academy of Marketing Science, 50(6), 1125-1134. https://doi.org/10.1007/s11747-022-00906-2 DOI: https://doi.org/10.1007/s11747-022-00906-2
Radford, A., Metz, L. y Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint, arXiv:1511.06434. https://doi.org/10.48550/arXiv.1511.06434
Rubino, L., Capasso, C. y Veneri, O. (2017). Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility. Applied Energy, 207, 438-464. https://doi.org/10.1016/j.apenergy.2017.06.097 DOI: https://doi.org/10.1016/j.apenergy.2017.06.097
Rust, R. T. y Huang, M. H. (2014). The service revolution and the transformation of marketing science. Marketing Science, 33(2), 206-221. https://doi.org/10.1287/mksc.2013.0836 DOI: https://doi.org/10.1287/mksc.2013.0836
Sarker, I. H. (2021). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science, 2(5), 377. https://doi.org/10.1007/s42979-021-00765-8 DOI: https://doi.org/10.1007/s42979-021-00765-8
Schaub, L.-P. (2020). La industria del lenguaje en la era del dato. Ábaco, 103, 82-89. https://www.jstor.org/stable/10.2307/27135841
Shamim, S., Zeng, J., Khan, Z. y Zia, N. U. (2020). Big data analytics capability and decision-making performance in emerging market firms: The role of contractual and relational governance mechanisms. Technological Forecasting and Social Change, 161. https://doi.org/10.1016/j.techfore.2020.120315 DOI: https://doi.org/10.1016/j.techfore.2020.120315
Shankar, V. y Parsana, S. (2022). An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing. Journal of the Academy of Marketing Science, 50(6), 1324-1350. https://doi.org/10.1007/s11747-022-00840-3 DOI: https://doi.org/10.1007/s11747-022-00840-3
Song, L., Hu, X., Zhang, G., Spachos, P., Plataniotis, K. N. y Wu, H. (2022). Networking systems of AI: On the convergence of computing and communications. IEEE Internet of Things Journal, 9(20), 20352-20381. https://doi.org/10.1109/JIOT.2022.3172270 DOI: https://doi.org/10.1109/JIOT.2022.3172270
Timoshenko, A. y Hauser, J. R. (2019). Identifying customer needs from user-generated content. Marketing Science, 38(1), 1-20. https://doi.org/10.1287/mksc.2018.1123 DOI: https://doi.org/10.1287/mksc.2018.1123
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gómez, A. N. y Polosukhin, I. (2017). Attention Is All You Need. arXiv preprint arXiv:1706.03762.
Villamarín, A. T. (2024). Big data en ciencias sociales. Una introducción a la automatización de análisis de datos de texto mediante procesamiento de lenguaje natural y aprendizaje automático. Revista CENTRA de Ciencias Sociales, 3(1). https://doi.org/10.54790/rccs.51 DOI: https://doi.org/10.54790/rccs.51
Weber, R. H. (2010). Internet of Things–New security and privacy challenges. Computer Law y Security Review, 26(1), 23-30. https://doi.org/10.1016/j.clsr.2009.11.008 DOI: https://doi.org/10.1016/j.clsr.2009.11.008
Wei, C., Wang, Y.-C., Wang, B. y Kuo, C.-C. J. (2023). An overview on language models: Recent developments and outlook. ArXiv Preprint ArXiv:2303.05759. https://doi.org/10.48550/arXiv.2303.05759
Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S. y Fedus, W. (2022). Emergent abilities of large language models. arXiv preprint arXiv:2206.07682. https://doi.org/10.48550/arXiv.2206.07682
Young, T., Hazarika, D., Poria, S. y Cambria, E. (2018). Recent trends in deep learning based natural language processing. IEEE Computational Intelligence Magazine, 13(3), 55-75. https://doi.org/10.1109/MCI.2018.2840738 DOI: https://doi.org/10.1109/MCI.2018.2840738
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Alberto Tomás Delso Vicente, Marisol Carvajal Camperos, Daniel Ángel Corral De La Mata
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).