La evolución del procesamiento del lenguaje natural y su influencia en la inteligencia artificial: Una revisión y líneas de investigación futura

Autores/as

DOI:

https://doi.org/10.31637/epsir-2025-782

Palabras clave:

Procesamiento del lenguaje natural, Modelos de lenguaje, Aprendizaje automatico, Infraestructura computacional, Inteligencia artificial, Revisión de literatura, Energías renovables, Ciencia de datos y análisis

Resumen

Introducción: Este estudio revisa los desarrollos significativos en el procesamiento del lenguaje natural (PLN) y su impacto en la inteligencia artificial (IA), enfocándose en los avances en modelos de lenguaje, infraestructuras computacionales y la integración de métodos de aprendizaje automático. Metodología: Se realizó una revisión sistemática de la literatura utilizando las directrices PRISMA, centrada en artículos publicados entre 2022 y 2024. Se utilizó Web of Science, con términos de búsqueda como "procesamiento del lenguaje natural", "PLN". Resultados: La revisión destaca el papel crítico de los modelos de lenguaje avanzados como GPT-4, BERT y sus variantes en la mejora de la comprensión y generación del lenguaje natural, la importancia de infraestructuras de computación de alto rendimiento y el uso de técnicas de aprendizaje automático para optimizar tareas de PLN. Discusión: Los hallazgos confirman la relevancia de infraestructuras computacionales robustas y revelan nuevas perspectivas sobre la rápida evolución y adopción más amplia de técnicas de PLN en diversos sectores. Conclusiones: Es esencial continuar invirtiendo en infraestructuras computacionales y el desarrollo de modelos de lenguaje avanzados. La investigación futura debe ampliar el periodo de estudio, diversificar los idiomas, incluir literatura gris, realizar estudios longitudinales y explorar los desafíos de la ética y la privacidad en la implementación de técnicas de PLN.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alberto Tomás Delso Vicente, Universidad Rey Juan Carlos

Experiencia en gestión de operaciones con enfoque en la optimización de recursos y la eficiencia operativa. Habilidades analíticas, de gestión y comunicación, así como experiencia en gestión de proyectos, liderando proyectos exitosos internacionales y cumpliendo con regulaciones industriales. Comprometido con la innovación. Estudiante de Doctorado, con un MBA en Business Administration, además de un Grado en Ingeniería Química. Ha trabajado como Ingeniero Logístico y Mantenimiento de cisternas en empresas internacionales. La experiencia académica se complementa con el rol de profesor y coordinador en la Universidad Rey Juan Carlos, donde se han desarrollado habilidades en gestión educativa y liderazgo. Destaca en áreas como análisis de datos, CRM, ERP, y marketing digital. Además, cuenta con competencias avanzadas en idiomas: Inglés, Italiano y alemán.

Marisol Carvajal Camperos, Universidad Rey Juan Carlos

PhD en Administración y Dirección de Empresas por la Universidad Complutense de Madrid, cum laude y mención internacional. Ingeniera Industrial homologada en España, MBA por el Instituto de Estudios Bursátiles (IEB) de Madrid, y especialista en Recursos Humanos y Gerencia de Empresas por universidades en Venezuela y Colombia. Profesora y conferenciante internacional, ha trabajado en Westfield Business School, CEIPA Business School y la Universidad Rey Juan Carlos (URJC). Ha publicado artículos en revistas JCR y Scopus, y es revisora de la revista por pares ciego. Ha sido Vicedecana, Decana y Vicerrectora en Euro-EAD Madrid, y es Directora de la Maestría en Gestión de Talento Humano en EIG-UIDES. Ha desempeñados puesto de alta dirección en empresas de América Latina y en España.

Daniel Ángel Corral De La Mata, Universidad Rey Juan Carlos

PhD en Administración y Dirección de Empresas por la Universidad Rey Juan Calos (URJC), con calificación cum laude. Experiencia avalada en más de 30 años de actividad en el sector financiero, desempeñando funciones de Dirección Comercial tanto a nivel de red como de Dirección Territorial. Experiencia en puestos de responsabilidad a nivel de Servicios Centrales, en departamentos tales como "Marketing", "Canales Alternativos", "Medios de Pago", "Control de Gestión y Desarrollo de Negocio", "Internet y Banca online" y "Asset Management".  Profesor de Universidad de la Rey Juan Carlos (URJC). Ha publicado artículos en revistas JCR y Scopus. Miembro del equipo de investigación: MARPRISO y del grupo de Innovación docente consolidado en inteligencia de datos, sistemas de la información y nuevas tendencias.

Citas

Adamopoulou, E. y Moussiades, L. (2020). An overview of chatbot technology. En IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 373-383). Springer, Cham. https://doi.org/10.1007/978-3-030-49186-4_31 DOI: https://doi.org/10.1007/978-3-030-49186-4_31

Akter, S., Michael, K., Uddin, M. R., McCarthy, G. y Rahman, M. (2022). Transforming business using digital innovations: The application of AI, blockchain, cloud and data analytics. Annals of Operations Research, 1-33. https://doi.org/10.1007/s10479-020-03620-w DOI: https://doi.org/10.1007/s10479-020-03620-w

Awan, U., Shamim, S., Khan, Z., Zia, N. U., Shariq, S. M., y Khan, M. N. (2021). Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technological Forecasting and Social Change, 168. https://doi.org/10.1016/j.techfore.2021.120766 DOI: https://doi.org/10.1016/j.techfore.2021.120766

Barman, P., Dutta, L., Bordoloi, S., Kalita, A., Buragohain, P., Bharali, S. y Azzopardi, B. (2023). Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches. Renewable and Sustainable Energy Reviews, 183. https://doi.org/10.1016/j.rser.2023.113518 DOI: https://doi.org/10.1016/j.rser.2023.113518

Berger, J., Humphreys, A., Ludwig, S., Moe, W. W., Netzer, O., y Schweidel, D. A. (2020). Uniting the tribes: Using text for marketing insight. Journal of Marketing, 84(1), 1-25. https://doi.org/10.1177/0022242919873106 DOI: https://doi.org/10.1177/0022242919873106

Bojórquez, D. M. (2021). De redes neuronales recurrentes a modelos de lenguaje: la evolución del pln en la generación de textos. Publicación, 4, octubre de 2021. https://110.22201/dgtic.26832968e.2021.4.1 DOI: https://doi.org/10.22201/dgtic.26832968e.2021.4.1

Bolla, R., Bruschi, R., Davoli, F. y Cucchietti, F. (2010). Energy efficiency in the future internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Communications Surveys y Tutorials, 13(2), 223-244. https://doi.org/10.1109/SURV.2011.071410.00073 DOI: https://doi.org/10.1109/SURV.2011.071410.00073

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P. y Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901. https://Language models are few-shot learners. com

Cambria, E. y White, B. (2014). Jumping NLP curves: A review of natural language processing research. IEEE Computational intelligence magazine, 9(2), 48-57. https://doi.org/10.1109/MCI.2014.2307227 DOI: https://doi.org/10.1109/MCI.2014.2307227

Cedeno-Moreno, D. E., y Millan, A. (2023). Arquitectura de PLN aplicada al contexto de la salud mental. I+ D Tecnológico, 19(2), 24-29. https://doi.org/10.33412/idt.v19.2.3770 DOI: https://doi.org/10.33412/idt.v19.2.3770

Cedron, F., Carballal, A., Fernandez-Lozano, C., Munteanu, C. y Pazos, A. (2018). Infraestructure to support biomedical applications. https://doi.org/10.3390/mol2net-04-05507 DOI: https://doi.org/10.3390/mol2net-04-05507

Clark, K., Luong, M. T., Le, Q. V., y Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv, 2003.10555. https://doi.org/10.48550/arXiv.2003.10555

Davenport, T. H. y Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116. https://blockqai.com

Deng, L. y Liu, Y. (Eds.). (2018). Deep learning in natural language processing. Springer. https://doi.org/10.1007/978-981-10-520-5

Devlin, J., Chang, M. W., Lee, K., y Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint, arXiv:1810.04805. https://doi.org/10.48550/arXiv.1810.04805

Ellis-Chadwick, F. y Chaffey, D. (2012). Digital marketing: strategy, implementation and practice. Pearson. https://lontar.ui.ac.id/detail?id=20419965

García-Martínez, J. A., Herrera-Villalobos, G. y Fallas-Vargas, M. A. (2021). Aprender conectados: Un estudio sobre las redes personales de aprendizaje de estudiantes universitarios. Educatio Siglo XXI, 39(2), 41-60. https://doi.org/10.6018/educatio.463821 DOI: https://doi.org/10.6018/educatio.463821

Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic roadmap toward Industry 4.0. Journal of Manufacturing Technology Management, 29(6), 910-936. https://doi.org/10.1108/JMTM-02-2018-0057 DOI: https://doi.org/10.1108/JMTM-02-2018-0057

Gill, S. S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M. y Buyya, R. (2022). Quantum computing: A taxonomy, systematic review and future directions. Software: Practice and Experience, 52(1), 66-114. https://doi.org/10.1002/spe.3039 DOI: https://doi.org/10.1002/spe.3039

Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., y Abraham, A. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514. https://doi.org/10.1016/j.iot.2022.100514 DOI: https://doi.org/10.1016/j.iot.2022.100514

Giraldo Forero, A. F. y Orozco Duque, A. F. (2023). Evolución del procesamiento natural del lenguaje. Tecnológicas, 26(56). https://doi.org/10.22430/22565337.2687 DOI: https://doi.org/10.22430/22565337.2687

Gómez, J. M. (2008). InTiMe: plataforma de integración de recursos de PLN. Procesamiento Del Lenguaje Natural, 40.

Goyal, P., Pandey, S. y Jain, K. (2018). Deep learning for natural language processing. Apress. https://doi.org/10.1007/978-1-4842-3685-7 DOI: https://doi.org/10.1007/978-1-4842-3685-7

Hannigan, T. R., Haans, R. F., Vakili, K., Tchalian, H., Glaser, V. L., Wang, M. S., ... y Jennings, P. D. (2019). Topic modeling in management research: Rendering new theory from textual data. Academy of Management Annals, 13(2), 586-632. https://doi.org/10.5465/annals.2017.0099 DOI: https://doi.org/10.5465/annals.2017.0099

Hartmann, J., Huppertz, J., Schamp, C. y Heitmann, M. (2019). Comparing automated text classification methods. International Journal of Research in Marketing, 36(1), 20-38. https://doi.org/10.1016/j.ijresmar.2018.09.009 DOI: https://doi.org/10.1016/j.ijresmar.2018.09.009

Hirschberg, J. y Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261-266. https://doi.org/10.1126/science.aaa8685 DOI: https://doi.org/10.1126/science.aaa8685

Huang, S., Dong, L., Wang, W., Hao, Y., Singhal, S., Ma, S., Lv, T., Cui, L., Mohammed, O. K. y Patra, B. (2024). Language is not all you need: Aligning perception with language models. Advances in Neural Information Processing Systems, 36. https://proceedings.neurips.com

Ivanovski, K., Hailemariam, A. y Smyth, R. (2021). The effect of renewable and non-renewable energy consumption on economic growth: Non-parametric evidence. Journal of Cleaner Production, 286. https://doi.org/10.1016/j.jclepro.2020.124956 DOI: https://doi.org/10.1016/j.jclepro.2020.124956

Jing, K. y Xu, J. (2019). A survey on neural network language models. ArXiv Preprint ArXiv:1906.03591. https://doi.org/10.48550/arXiv.1906.03591

Jurafsky, D. y Martin, J. H. (2019). Speech and Language Processing (3ª ed.). Prentice Hall. https://web.stanford.edu/~jurafsky/slp3

Ladeira, A. P. (2010). Processamento de linguagem natural: caracterização da produção científica dos pesquisadores brasileiros [Tesis de doctorado]. http://hdl.handle.net/1843/ECID-8B3Q6C

Lee, D., Hosanagar, K. y Nair, H. S. (2018). Advertising content and consumer engagement on social media: Evidence from Facebook. Management Science, 64(11), 5105-5131. https://doi.org/10.1287/mnsc.2017.2902 DOI: https://doi.org/10.1287/mnsc.2017.2902

Li, Y. y Xie, Y. (2020). Is a picture worth a thousand words? An empirical study of image content and social media engagement. Journal of Marketing Research, 57(1), 1-19. https://doi.org/10.1177/0022243719881113 DOI: https://doi.org/10.1177/0022243719881113

Liu, B. (2022). Sentiment analysis and opinion mining. Springer Nature. DOI: https://doi.org/10.1007/978-3-031-02145-9 DOI: https://doi.org/10.1007/978-3-031-02145-9

Liu, X., Shin, H. y Burns, A. C. (2021). Examining the impact of luxury brand's social media marketing on customer engagement: Using big data analytics and natural language processing. Journal of Business Research, 125, 815-826. https://doi.org/10.1016/j.jbusres.2019.04.042 DOI: https://doi.org/10.1016/j.jbusres.2019.04.042

Longoni, C. y Cian, L. (2022). Artificial intelligence in utilitarian vs. hedonic contexts: The “word-of-machine” effect. Journal of Marketing, 86(1), 91-108. https://doi.org/10.1177/0022242920957347 DOI: https://doi.org/10.1177/0022242920957347

López, J., Sánchez-Sánchez, C. y Villatoro-Tello, E. (2014). Laboratorio en línea para el procesamiento automático de documentos. RCS, 72, 1-10. https://rcs.cic.ipn.mx/2014_72/RCS_72_2014.pdf DOI: https://doi.org/10.13053/rcs-72-1-2

Marr, B. (2020). Tech Trends in Practice: The 25 technologies that are driving the 4ª Industrial Revolution. John Wiley y Sons.

Martínez, P., García-Serrano, A. y de Miguel Castaño, A. (1999). Estructuración del Conocimiento para la Interpretación de Textos y su Aplicación al Diseño de Esquemas Conceptuales de Bases de Datos. Inteligencia Artificial, 3(8), 36-58. DOI: https://doi.org/10.4114/ia.v3i8.645

Melluso, N., Grangel-González, I. y Fantoni, G. (2022). Enhancing industry 4.0 standards interoperability via knowledge graphs with natural language processing. Computers in Industry, 140. https://doi.org/10.1016/j.compind.2022.103676 DOI: https://doi.org/10.1016/j.compind.2022.103676

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. y PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine, 151(4), 264-269. https://doi.org/10.1016/j.ijsu.2010.02.007 DOI: https://doi.org/10.7326/0003-4819-151-4-200908180-00135

Nagda, K., Mukherjee, A., Shah, M., Mulchandani, P. y Kurup, L. (2020). Ascent of pre-trained state-of-the-art language models. Advanced Computing Technologies and Applications: Proceedings of 2nd International Conference on Advanced Computing Technologies and Applications—ICACTA 2020, 269–280. https://doi.org/10.1007/978-981-15-3242-9_26 DOI: https://doi.org/10.1007/978-981-15-3242-9_26

Plangger, K., Grewal, D., de Ruyter, K. y Tucker, C. (2022). The future of digital technologies in marketing: A conceptual framework and an overview. Journal of the Academy of Marketing Science, 50(6), 1125-1134. https://doi.org/10.1007/s11747-022-00906-2 DOI: https://doi.org/10.1007/s11747-022-00906-2

Radford, A., Metz, L. y Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint, arXiv:1511.06434. https://doi.org/10.48550/arXiv.1511.06434

Rubino, L., Capasso, C. y Veneri, O. (2017). Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility. Applied Energy, 207, 438-464. https://doi.org/10.1016/j.apenergy.2017.06.097 DOI: https://doi.org/10.1016/j.apenergy.2017.06.097

Rust, R. T. y Huang, M. H. (2014). The service revolution and the transformation of marketing science. Marketing Science, 33(2), 206-221. https://doi.org/10.1287/mksc.2013.0836 DOI: https://doi.org/10.1287/mksc.2013.0836

Sarker, I. H. (2021). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science, 2(5), 377. https://doi.org/10.1007/s42979-021-00765-8 DOI: https://doi.org/10.1007/s42979-021-00765-8

Schaub, L.-P. (2020). La industria del lenguaje en la era del dato. Ábaco, 103, 82-89. https://www.jstor.org/stable/10.2307/27135841

Shamim, S., Zeng, J., Khan, Z. y Zia, N. U. (2020). Big data analytics capability and decision-making performance in emerging market firms: The role of contractual and relational governance mechanisms. Technological Forecasting and Social Change, 161. https://doi.org/10.1016/j.techfore.2020.120315 DOI: https://doi.org/10.1016/j.techfore.2020.120315

Shankar, V. y Parsana, S. (2022). An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing. Journal of the Academy of Marketing Science, 50(6), 1324-1350. https://doi.org/10.1007/s11747-022-00840-3 DOI: https://doi.org/10.1007/s11747-022-00840-3

Song, L., Hu, X., Zhang, G., Spachos, P., Plataniotis, K. N. y Wu, H. (2022). Networking systems of AI: On the convergence of computing and communications. IEEE Internet of Things Journal, 9(20), 20352-20381. https://doi.org/10.1109/JIOT.2022.3172270 DOI: https://doi.org/10.1109/JIOT.2022.3172270

Timoshenko, A. y Hauser, J. R. (2019). Identifying customer needs from user-generated content. Marketing Science, 38(1), 1-20. https://doi.org/10.1287/mksc.2018.1123 DOI: https://doi.org/10.1287/mksc.2018.1123

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gómez, A. N. y Polosukhin, I. (2017). Attention Is All You Need. arXiv preprint arXiv:1706.03762.

Villamarín, A. T. (2024). Big data en ciencias sociales. Una introducción a la automatización de análisis de datos de texto mediante procesamiento de lenguaje natural y aprendizaje automático. Revista CENTRA de Ciencias Sociales, 3(1). https://doi.org/10.54790/rccs.51 DOI: https://doi.org/10.54790/rccs.51

Weber, R. H. (2010). Internet of Things–New security and privacy challenges. Computer Law y Security Review, 26(1), 23-30. https://doi.org/10.1016/j.clsr.2009.11.008 DOI: https://doi.org/10.1016/j.clsr.2009.11.008

Wei, C., Wang, Y.-C., Wang, B. y Kuo, C.-C. J. (2023). An overview on language models: Recent developments and outlook. ArXiv Preprint ArXiv:2303.05759. https://doi.org/10.48550/arXiv.2303.05759

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S. y Fedus, W. (2022). Emergent abilities of large language models. arXiv preprint arXiv:2206.07682. https://doi.org/10.48550/arXiv.2206.07682

Young, T., Hazarika, D., Poria, S. y Cambria, E. (2018). Recent trends in deep learning based natural language processing. IEEE Computational Intelligence Magazine, 13(3), 55-75. https://doi.org/10.1109/MCI.2018.2840738 DOI: https://doi.org/10.1109/MCI.2018.2840738

Descargas

Publicado

2024-12-10

Cómo citar

Delso Vicente, A. T., Carvajal Camperos, M., & Corral De La Mata, D. Ángel. (2024). La evolución del procesamiento del lenguaje natural y su influencia en la inteligencia artificial: Una revisión y líneas de investigación futura. European Public & Social Innovation Review, 10, 1–23. https://doi.org/10.31637/epsir-2025-782

Número

Sección

Artículos Portada