Conocimiento, percepción y formación en inteligencia artificial: análisis de moderación en docentes universitarios mexicanos
DOI:
https://doi.org/10.31637/epsir-2026-2178Palavras-chave:
Inteligencia artificial, formación del personal docente, percepción, enseñanza superior, conocimiento tecnológico, actitud docente, educación digital, adopción de tecnologíasResumo
Introducción: La inteligencia artificial (IA) está transformando la educación superior, pero su impacto depende del conocimiento y actitud del profesorado. Este estudio examina si la percepción/actitud hacia la IA (PIA) modera la relación entre la formación docente en IA (FIA) y el conocimiento sobre esta tecnología. Metodología: Se aplicó un enfoque cuantitativo, no experimental, transversal y correlacional-explicativo. Se encuestó a 153 docentes universitarios mediante el cuestionario validado CAPIAG-P, que evalúa tres dimensiones: conocimiento, percepción/actitud y formación. El análisis estadístico incluyó regresión lineal con interacción. Resultados: El modelo explicó el 37,08% de la varianza en el conocimiento. La formación en IA (FIA) mostró un efecto positivo no significativo (β = 0,24, p = 0,501) y la percepción/actitud (PIA), un efecto negativo no significativo (β = -0,29, p = 0,425). La interacción FIA × PIA tampoco fue significativa (β = 0,16, p = 0,150). Discusión: Los resultados sugieren que, aunque la formación en IA podría influir en el conocimiento docente, este efecto no se ve moderado por la actitud. La percepción inicial no potencia ni debilita dicha relación. Conclusiones: Es fundamental impulsar programas de formación técnica en IA para el profesorado, independientemente de sus actitudes previas hacia esta tecnología.
Downloads
Referências
Abulibdeh, A., Zaidan, E. y Abulibdeh, R. (2024). Navigating the confluence of artificial intelligence and education for sustainable development in the era of industry 4.0: Challenges, opportunities, and ethical dimensions. Journal of Cleaner Production, 437, 140527, https://doi.org/10.1016/j.jclepro.2023.140527 DOI: https://doi.org/10.1016/j.jclepro.2023.140527
Airaj, M. (2024). Ethical artificial intelligence for teaching-learning in higher education. Educ Inf Technol, 29, 17145-17167. https://doi.org/10.1007/s10639-024-12545-x DOI: https://doi.org/10.1007/s10639-024-12545-x
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T DOI: https://doi.org/10.1016/0749-5978(91)90020-T
Aldreabi, H., Dahdoul, N., Alhur, M., Alzboun, N. y Alsalhi, N. (2025). Determinants of Student Adoption of Generative AI in Higher Education. Electronic Journal of e-Learning, 23(1),
15-33 https://doi.org/10.34190/ejel.23.1.3599 DOI: https://doi.org/10.34190/ejel.23.1.3599
Aljemely, Y. (2024). Challenges and best practices in training teachers to utilize artificial intelligence: a systematic review. Frontiers in Education. https://doi.org/10.3389/feduc.2024.1470853 DOI: https://doi.org/10.3389/feduc.2024.1470853
Al-kfairy, M., Mustafa, D., Kshetri, N., Insiew, M. y Alfandi, O. (2024). Ethical Challenges and Solutions of Generative AI: An Interdisciplinary Perspective. Informatics, 11(3),
58. https://doi.org/10.3390/informatics11030058 DOI: https://doi.org/10.3390/informatics11030058
Al-Zyoud, H. (2020). The Role of Artificial Intelligence in Teacher Professional Development. Universal Journal of Educational Research, 8(11B), 6263-6272. https://doi.org/10.13189/ujer.2020.082265 DOI: https://doi.org/10.13189/ujer.2020.082265
Baker, B., Mills, K. A., McDonald, P. y Wang, L. (2023). AI, Concepts of Intelligence, and Chatbots: The “Figure of Man,” the Rise of Emotion, and Future Visions of Education. Teachers College Record, 125(6), 60-84. https://doi.org/10.1177/01614681231191291 DOI: https://doi.org/10.1177/01614681231191291
Bayaga, A. (2024). Leveraging AI-enhanced and emerging technologies for pedagogical innovations in higher education. Educ. Inf. Technol., 30, 1045-1072. https://doi.org/10.1007/s10639-024-13122-y DOI: https://doi.org/10.1007/s10639-024-13122-y
Bura, C. y Myakala, P. (2024). Advancing Transformative Education: Generative AI as a Catalyst for Equity and Innovation. ArXiv, abs/2411.15971. https://doi.org/10.48550/arXiv.2411.15971
Chao-Rebolledo, C. y Rivera-Navarro, M. (2024). Usos y percepciones de herramientas de inteligencia artificial en la educación superior en México. Revista Iberoamericana de Educación, 95(1), 57-72. https://doi.org/10.35362/rie9516259 DOI: https://doi.org/10.35362/rie9516259
Chatterjee, S. y Bhattacharjee, K. (2020). Adoption of artificial intelligence in higher education: a quantitative analysis using structural equation modelling. Education and Information Technologies, 25, 3443-3463. https://doi.org/10.1007/s10639-020-10159-7 DOI: https://doi.org/10.1007/s10639-020-10159-7
Chou, C., Shen, T., Shen, T. y Shen, C. (2024). Teachers’ adoption of AI-supported teaching behavior and its influencing factors: using structural equation modeling. Journal of Computers in Education. https://doi.org/10.1007/s40692-024-00332-z DOI: https://doi.org/10.1007/s40692-024-00332-z
Cordero, J., Torres-Zambrano, J. y Cordero-Castillo, A. (2025). Integration of Generative Artificial Intelligence in Higher Education: Best Practices. Education Sciences, 15(1), 32. https://doi.org/10.3390/educsci15010032 DOI: https://doi.org/10.3390/educsci15010032
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. DOI: https://doi.org/10.2307/249008
Erdmann, A. y Toro-Dupouy, L. (2025). The influence of the institutional environment on AI adoption in universities: identifying value drivers and necessary conditions. European Journal of Innovation Management. https://doi.org/10.1108/ejim-04-2024-0407 DOI: https://doi.org/10.1108/EJIM-04-2024-0407
Ertmer, P. A. y Ottenbreit-Leftwich, A. T. (2010). Teacher Technology Change: How Knowledge, Confidence, Beliefs, and Culture Intersect. Journal of Research on Technology in Education, 42(3), 255-284. https://doi.org/10.1080/15391523.2010.10782551 DOI: https://doi.org/10.1080/15391523.2010.10782551
Fu, Y. y Weng, Z. (2024). Navigating the ethical terrain of AI in education: A systematic review on framing responsible human-centered AI practices. Computers and Education: Artificial Intelligence. https://doi.org/10.1016/j.caeai.2024.100306 DOI: https://doi.org/10.1016/j.caeai.2024.100306
Granić, A. (2022). Educational Technology Adoption: A systematic review. Education and Information Technologies, 27, 9725-9744. https://doi.org/10.1007/s10639-022-10951-7 DOI: https://doi.org/10.1007/s10639-022-10951-7
Guerrero-Quiñonez, A. J., Bedoya-Flores, M. C., Mosquera-Quiñonez, E. F., Mesías-Simisterra, Á. E. y Bautista-Sánchez, J. V. (2023). Artificial Intelligence and its scope in Latin American higher education. Ibero-American Journal of Education & Society Research, 3(1), 264-271. https://doi.org/10.56183/iberoeds.v3i1.627 DOI: https://doi.org/10.56183/iberoeds.v3i1.627
Guillén-Gámez, F. D., Ruiz-Palmero, J., Palacios Rodríguez, A. y Martín-Párraga, L. (2022). Formación del profesorado universitario en Competencia Digital: análisis con métodos de investigación correlacionales y comparativos. Hachetetepé. Revista científica en Educación y Comunicación, 24, 1-11. https://doi.org/10.25267/Hachetetepe.2022.i24.1101 DOI: https://doi.org/10.25267/Hachetetepe.2022.i24.1101
Hamal, O., El Faddouli, N. E., Harouni, M. H. A. y Lu, J. (2022). Artificial Intelligent in Education. Sustainability, 14, 2862. https://doi.org/10.3390/su14052862 DOI: https://doi.org/10.3390/su14052862
Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis: a regression-based approach (3rd ed.). The Guilford Press.
Hazzan-Bishara, A., Kol, O. y Levy, S. (2025). The factors affecting teachers’ adoption of AI technologies: A unified model of external and internal determinants. Education and Information Technologies. https://doi.org/10.1007/s10639-025-13393-z DOI: https://doi.org/10.1007/s10639-025-13393-z
Herrera, P., Huepe, M. y Trucco, D. (2025). Educación y desarrollo de competencias digitales en América Latina y el Caribe, Documentos de Proyectos (LC/TS.2025/3), Santiago, Comisión Económica para América Latina y el Caribe (CEPAL).
Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Shum, S., Santos, O., Rodrigo, M., Cukurova, M., Bittencourt, I. y Koedinger, K. (2021). Ethics of AI in Education: Towards a Community-Wide Framework. International Journal of Artificial Intelligence in Education, 32, 504-526. https://doi.org/10.1007/s40593-021-00239-1 DOI: https://doi.org/10.1007/s40593-021-00239-1
Holmes, W., Bialik, M. y Fadel, C. (2022). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign. http://bit.ly/AIED-BOOK DOI: https://doi.org/10.58863/20.500.12424/4276068
Howard, S. K., Tondeur, J. M. J. y Yang, J. (2021). What to teach? Strategies for developing digital competence in pre-service teacher training. Computers & Education, 165, 104149. https://doi.org/10.1016/j.compedu.2021.104149 DOI: https://doi.org/10.1016/j.compedu.2021.104149
Jaiswal, P. (2020). Integrating Educational Technologies to Augment Learners' Academic Achievements. Int. J. Emerg. Technol. Learn., 15, 145-159. https://doi.org/10.3991/ijet.v15i02.11809 DOI: https://doi.org/10.3991/ijet.v15i02.11809
Jardón Gallegos, M. del C., Allas Chisag, W. D., Zamora Valencia, D. A. y Cedeño Saltos, N. E. (2024). Impacto de la inteligencia artificial en la educación superior: percepciones de alumnos y profesores sobre el uso de IA en el aprendizaje y la evaluación. Reincisol, 3(6), 7008-7033. https://doi.org/10.59282/reincisol.V3(6)7008-7033 DOI: https://doi.org/10.59282/reincisol.V3(6)7008-7033
Kamalov, F. Santandreu Calonge, D. y Gurrib, I. (2023). New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Sustainability, 15, 12451. https://doi.org/10.3390/su151612451 DOI: https://doi.org/10.3390/su151612451
Khan, M. A. (2021). COVID-19’s Impact on Higher Education: A Rapid Review of Early Reactive Literature. Education Sciences, 11(8), 421. https://doi.org/10.3390/educsci11080421 DOI: https://doi.org/10.3390/educsci11080421
López Ros, S. P., Cascales Martínez, A. y Gomariz Vicente, M. Á. (2024). Cuestionario sobre el conocimiento, actitud y percepción del profesorado hacia la inteligencia artificial generativa. CAPIAG-P (profesorado). https://digitum.um.es/digitum/handle/10201/141368
Luckin, R., Holmes, W., Griffiths, M. y Forcier, L. B. (2016). Intelligence Unleashed: An Argument for AI in Education. Pearson.
Miao, F., Holmes, W., Huang, R. y Zhang, H. (2021). AI and education: guidance for policy-makers. UNESCO Publishing. https://doi.org/10.54675/PCSP7350 DOI: https://doi.org/10.54675/PCSP7350
Ng, D. T. K., Leung, J. K. L., Su, J., Ng, R. C. W. y Chu, S. K. W. (2023). Teachers’ AI digital competencies and twenty-first century skills in the post-pandemic world. Education Tech Research Dev, 71, 137-161. https://doi.org/10.1007/s11423-023-10203-6 DOI: https://doi.org/10.1007/s11423-023-10203-6
Özdemir, O. (2024). Kahoot! Game-based digital learning platform: A comprehensive meta-analysis. J. Comput. Assist. Learn., 41. https://doi.org/10.1111/jcal.13084 DOI: https://doi.org/10.1111/jcal.13084
Parker, J., Richard, V., Acabá, A., Escoffier, S., Flaherty, S., Jablonka, S. y Becker, K. (2024). Negotiating Meaning with Machines: AI's Role in Doctoral Writing Pedagogy. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-024-00425-x DOI: https://doi.org/10.2139/ssrn.4793715
Petko, D., Cantieni, A. y Prasse, D. (2017). Perceived Quality of Educational Technology Matters. Journal of Educational Computing Research, 54, 1070-1091. https://doi.org/10.1177/0735633116649373 DOI: https://doi.org/10.1177/0735633116649373
Salas-Pilco, S. Z., Xiao, K. y Hu, X. (2022). Artificial Intelligence and Learning Analytics in Teacher Education: A Systematic Review. Education Sciences, 12(8), 569. https://doi.org/10.3390/educsci12080569 DOI: https://doi.org/10.3390/educsci12080569
Secretaría de Educación Pública. (2020). Agenda digital educativa mexicana. https://acortar.link/CHzisL
Sharma, L. y Srivastava, M. (2019). Teachers’ motivation to adopt technology in higher education. Journal of Applied Research in Higher Education. https://doi.org/10.1108/JARHE-07-2018-0156 DOI: https://doi.org/10.1108/JARHE-07-2018-0156
Socorro Ovalles, J. A. (2024). Actitudes del profesorado ante el uso y manejo de la inteligencia artificial generativa (IAG) de modo eficiente. Revista Científica De Salud y Desarrollo Humano, 5(3), 1183-1213. https://doi.org/10.61368/r.s.d.h.v5i3.325 DOI: https://doi.org/10.61368/r.s.d.h.v5i3.325
Tan, X., Cheng, G. y Ling, M. (2024). Artificial Intelligence in Teaching and Teacher Professional Development: A Systematic Review. Computers and Education: Artificial Intelligence. https://doi.org/10.1016/j.caeai.2024.100355 DOI: https://doi.org/10.1016/j.caeai.2024.100355
Tarisayi, K. (2024). Preparing For AI’s Transformational Potential: Rethinking Teacher Education In South Africa. International Education Trend Issues, 2(1), 31-40. https://doi.org/10.56442/ieti.v2i1.364 DOI: https://doi.org/10.56442/ieti.v2i1.364
Teo, T. (2011). Factors influencing teachers’ intention to use technology: Model development and test. Computers & Education, 57(4), 2432-2440. https://doi.org/10.1016/j.compedu.2011.06.008 DOI: https://doi.org/10.1016/j.compedu.2011.06.008
Teo, T., Sang, G., Mei, B. y Hoi, C. K. W. (2018). Investigating pre-service teachers’ acceptance of Web 2.0 technologies in their future teaching: a Chinese perspective. Interactive Learning Environments, 27(4), 530–546. https://doi.org/10.1080/10494820.2018.1489290 DOI: https://doi.org/10.1080/10494820.2018.1489290
Tondeur, J., Trevisan, O., Howard, S. K. y van Braak, J. (2025). Preparing preservice teachers to teach with digital technologies: An update of effective SQD-strategies. Computers & Education, 232, 105262. https://doi.org/10.1016/J.COMPEDU.2025.105262 DOI: https://doi.org/10.1016/j.compedu.2025.105262
UNESCO. (2023). Guidance for generative AI in education and research. https://doi.org/10.54675/EWZM9535 DOI: https://doi.org/10.54675/EWZM9535
Venkatesh, V. y Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. https://www.jstor.org/stable/2634758 DOI: https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Thong, J. y Xu, X. (2016). Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. Journal of the Association for Information Systems, 17(5),
328-376. https://doi.org/10.17705/1jais.00428 DOI: https://doi.org/10.17705/1jais.00428
Vuorikari, R., Kluzer, S. y Punie, Y. (2022). DigComp 2.2: The Digital Competence Framework for Citizens - With new examples of knowledge, skills and attitudes. Publications Office of the European Union. https://dx.doi.org/10.2760/115376
Wong, G. K. W. (2016). The behavioral intentions of Hong Kong primary teachers in adopting educational technology. Education Tech Research Dev, 64, 313-338. https://doi.org/10.1007/s11423-016-9426-9 DOI: https://doi.org/10.1007/s11423-016-9426-9
Zawacki-Richter, O., Marín, V. I., Bond, M. y Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16, 39. https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0
Zualkernan, I. (2025). Adoption of Generative AI and Large Language Models in Education: A Short Review. International Conference on Electronics, Information, and Communication (ICEIC), 1-5. https://doi.org/10.1109/ICEIC64972.2025.10879632 DOI: https://doi.org/10.1109/ICEIC64972.2025.10879632
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2025 Alonso Contreras Avila, Myrna Delfina López Noriega, Lorena Zalthen Hernández

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

