Language models for generating programming questions with varying difficulty levels
DOI:
https://doi.org/10.31637/epsir-2024-760Palabras clave:
Large Langue Models, ChatGPT, Question Generation, Adaptation, Gamification, Python, Difficulty, PedagogyResumen
Introduction: This study explores the potential of Large Language Models (LLMs), specifically ChatGPT-4, in generating Python programming questions with varying degrees of difficulty. This ability could significantly enhance adaptive educational applications. Methodology: Experiments were conducted with ChatGPT-4 and participants to evaluate its ability to generate questions on various topics and difficulty levels in programming. Results: The results reveal a moderate positive correlation between the difficulty ratings assigned by ChatGPT-4 and the perceived difficulty ratings given by participants. ChatGPT-4 proves to be effective in generating questions that cover a wide range of difficulty levels.Discussion: The study highlights ChatGPT-4’s potential for use in adaptive educational applications that accommodate different learning competencies and needs. Conclusions: This study presents a prototype of a gamified educational application for teaching Python, which uses ChatGPT to automatically generate questions of varying difficulty levels. Future studies should conduct more exhaustive experiments, explore other programming languages, and address more complex programming concepts.
Descargas
Citas
Aguinis, H., Villamor, I., & Ramani, R. S. (2021). MTurk Research: Review and Recommendations. Journal of Management, 47(4), 823–837. SAGE Publications Inc. https://doi.org/10.1177/0149206320969787 DOI: https://doi.org/10.1177/0149206320969787
Ahmad, A., Zeshan, F., Khan, M. S., Marriam, R., Ali, A., & Samreen, A. (2020). The Impact of Gamification on Learning Outcomes of Computer Science Majors. ACM Transactions on Computing Education, 20(2). https://doi.org/10.1145/3383456 DOI: https://doi.org/10.1145/3383456
Albán Bedoya, I., & Ocaña-Garzón, M. (2022). Educational Programming as a Strategy for the Development of Logical-Mathematical Thinking. Lecture Notes in Networks and Systems, 405 LNNS, 309–323. https://doi.org/10.1007/978-3-030-96043-8_24 DOI: https://doi.org/10.1007/978-3-030-96043-8_24
Amatriain, X. (2024). Prompt Design and Engineering: Introduction and Advanced Methods. 1–26. http://arxiv.org/abs/2401.14423
Amazon. (2018). Amazon Mechanical Turk. https://www.mturk.com/
API Reference - OpenAI API. Retrieved December 10, 2023, from https://platform.openai.com/docs/api-reference/chat
Baudisch, P., Beaudouin-Lafon, M., Mackay, W., Association for Computing Machinery, SIGCHI (Group: U.S.), & ACM Digital Library. (2013). CHI2013 Changing perspectives : extended abstracts : the 31st Annual CHI Conference on Human Factors in Computing Systems : 27 April - 2 May, 2013, Paris, France.
Bennani, S., Maalel, A., & Ben Ghezala, H. (2022). Adaptive gamification in E-learning: A literature review and future challenges. Computer Applications in Engineering Education, 30 (2), 628–642. https://doi.org/10.1002/cae.22477 DOI: https://doi.org/10.1002/cae.22477
Biancini, G., Ferrato, A., & Limongelli, C. (2024). Multiple-Choice Question Generation Using Large Language Models: Methodology and Educator Insights. Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, 584–590. https://doi.org/10.1145/3631700.3665233 DOI: https://doi.org/10.1145/3631700.3665233
Busheska, A., & Lopez, C. (2022). Exploring the perceived complexity of 3d shapes: towards a spatial visualization VR application. Proceedings of the IDETC-CIE 2022, 1–9. DOI: https://doi.org/10.1115/DETC2022-91212
Caruccio, L., Cirillo, S., Polese, G., Solimando, G., Sundaramurthy, S., & Tortora, G. (2024). Claude 2.0 large language model: Tackling a real-world classification problem with a new iterative prompt engineering approach. Intelligent Systems with Applications, 21. https://doi.org/10.1016/j.iswa.2024.200336 DOI: https://doi.org/10.1016/j.iswa.2024.200336
Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H., Yi, X., Wang, C., Wang, Y., Ye, W., Zhang, Y., Chang, Y., Yu, P. S., Yang, Q., & Xie, X. (2024). A Survey on Evaluation of Large Language Models. ACM Trans. Intell. Syst. Technol., 15(3). https://doi.org/10.1145/3641289 DOI: https://doi.org/10.1145/3641289
Chen, B., Zhang, Z., Langrené, N., & Zhu, S. (2023). Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review. http://arxiv.org/abs/2310.14735
Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. de O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., … Zaremba, W. (2021). Evaluating Large Language Models Trained on Code. http://arxiv.org/abs/2107.03374
Chen, O., Paas, F., & Sweller, J. (2023). A Cognitive Load Theory Approach to Defining and Measuring Task Complexity Through Element Interactivity. Educational Psychology Review, 35 (2). https://doi.org/10.1007/s10648-023-09782-w DOI: https://doi.org/10.1007/s10648-023-09782-w
Davis, J., Van Bulck, L., Durieux, B., & Lindvall, C. (2023). The temperature feature of ChatGPT: Modifying creativity for clinical research (Preprint). JMIR Human Factors, 11. https://doi.org/10.2196/53559 DOI: https://doi.org/10.2196/preprints.53559
Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness: Defining “gamification.” Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, MindTrek 2011, 9–15. https://doi.org/10.1145/2181037.2181040 DOI: https://doi.org/10.1145/2181037.2181040
Doughty, J., Wan, Z., Bompelli, A., Qayum, J., Wang, T., Zhang, J., Zheng, Y., Doyle, A., Sridhar, P., Agarwal, A., Bogart, C., Keylor, E., Kultur, C., Savelka, J., & Sakr, M. (2024). A Comparative Study of AI-Generated (GPT-4) and Human-crafted MCQs in Programming Education. ACM International Conference Proceeding Series, 114–123. https://doi.org/10.1145/3636243.3636256 DOI: https://doi.org/10.1145/3636243.3636256
Ekin, S. (2023). Prompt Engineering For ChatGPT: A Quick Guide To Techniques, Tips, And Best Practices. https://doi.org/10.36227/techrxiv.22683919 DOI: https://doi.org/10.36227/techrxiv.22683919.v2
Flegal, K. E., Ragland, J. D., & Ranganath, C. (2019). Adaptive task difficulty influences neural plasticity and transfer of training. NeuroImage, 188, 111–121. https://doi.org/https://doi.org/10.1016/j.neuroimage.2018.12.003 DOI: https://doi.org/10.1016/j.neuroimage.2018.12.003
Gemini Team, Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican, K., Silver, D., Johnson, M., Antonoglou, I., Schrittwieser, J., Glaese, A., Chen, J., Pitler, E., Lillicrap, T., Lazaridou, A., … Vinyals, O. (2023). Gemini: A Family of Highly Capable Multimodal Models. http://arxiv.org/abs/2312.11805
Gomes, A., Ke, W., Lam, C. T., Teixeira, A., Correia, F., Marcelino, M., & Mendes, A. (2019). Understanding loops: a visual methodology. 2019 IEEE International Conference on Engineering, Technology and Education (TALE), 1–7. https://doi.org/10.1109/TALE48000.2019.9225951 DOI: https://doi.org/10.1109/TALE48000.2019.9225951
Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J., & Wang, H. (2023). Large Language Models for Software Engineering: A Systematic Literature Review. http://arxiv.org/abs/2308.10620
Huotari, K., & Hamari, J. (2017). A definition for gamification: anchoring gamification in the service marketing literature. Electronic Markets, 27(1), 21–31. https://doi.org/10.1007/s12525-015-0212-z DOI: https://doi.org/10.1007/s12525-015-0212-z
Ihantola, P., & Petersen, A. (2019). Code Complexity in Introductory Programming Courses. Proceedings of the 52nd Hawaii International Conference on System Sciences, 1–9. https://hdl.handle.net/10125/60204 DOI: https://doi.org/10.24251/HICSS.2019.924
Jones, K., Harland, J., Reid, J., & Bartlett, R. (2009). Relationship between examination questions and bloom’s taxonomy. Proceedings - Frontiers in Education Conference, 1–6. https://doi.org/10.1109/FIE.2009.5350598 DOI: https://doi.org/10.1109/FIE.2009.5350598
Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J., & Kim, H. (2023). Few-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education. Education and Information Technologies, 1–33. https://doi.org/10.1007/s10639-023-12249-8 DOI: https://doi.org/10.1007/s10639-023-12249-8
Lei, H., Cui, Y., & Zhou, W. (2018). Relationships between student engagement and academic achievement: A meta-analysis. Social Behavior and Personality, 46(3), 517–528. https://doi.org/10.2224/sbp.7054 DOI: https://doi.org/10.2224/sbp.7054
Liu, J., Xia, C. S., Wang, Y., & Zhang, L. (2023). Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation. http://arxiv.org/abs/2305.01210
Lu, L., Neale, N., Line, N. D., & Bonn, M. (2022). Improving Data Quality Using Amazon Mechanical Turk Through Platform Setup. Cornell Hospitality Quarterly, 63(2), 231–246. https://doi.org/10.1177/19389655211025475 DOI: https://doi.org/10.1177/19389655211025475
Mcshane, L., & Lopez, C. (2023). Perceived complexity of 3d shapes for spatial visualization tasks: humans vs generative models. Proceedings of the ASME IDETC-CIE 2023, 1–10. DOI: https://doi.org/10.1115/DETC2023-115081
Oliveira, W., Hamari, J., Shi, L., Toda, A. M., Rodrigues, L., Palomino, P. T., & Isotani, S. (2023). Tailored gamification in education: A literature review and future agenda. Education and Information Technologies, 28(1), 373–406. https://doi.org/10.1007/s10639-022-11122-4 DOI: https://doi.org/10.1007/s10639-022-11122-4
OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M., Belgum, J., … Zoph, B. (2023). GPT-4 Technical Report. http://arxiv.org/abs/2303.08774
Ortolan, P. (2023). Optimizing Prompt Engineering for Improved Generative AI Content. [Trabajo de fin de grado, Universidad Pontificia Comillas]. http://hdl.handle.net/11531/80629
Saleem, A. N., Noori, N. M., & Ozdamli, F. (2022). Gamification Applications in E-learning: A Literature Review. Technology, Knowledge and Learning, 27(1), 139–159. https://doi.org/10.1007/s10758-020-09487-x DOI: https://doi.org/10.1007/s10758-020-09487-x
Sarsa, S., Denny, P., Hellas, A., & Leinonen, J. (2022). Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models. ICER 2022 - Proceedings of the 2022 ACM Conference on International Computing Education Research, 1, 27–43. https://doi.org/10.1145/3501385.3543957 DOI: https://doi.org/10.1145/3501385.3543957
Scherer, R., Siddiq, F., & Sánchez-Scherer, B. (2021). Some Evidence on the Cognitive Benefits of Learning to Code. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.559424 DOI: https://doi.org/10.3389/fpsyg.2021.559424
Shankar, S., Zamfirescu-Pereira, J. D., Hartmann, B., Parameswaran, A. G., & Arawjo, I. (2024). Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences. http://arxiv.org/abs/2404.12272 DOI: https://doi.org/10.1145/3654777.3676450
Shieh J. (2023). Best practices for prompt engineering with the OpenAI API | OpenAI Help Center. OpenAI. https://bit.ly/4cSZyg6
Shin, E., & Ramanathan, M. (2023). Evaluation of prompt engineering strategies for pharmacokinetic data analysis with the ChatGPT large language model. Journal of Pharmacokinetics and Pharmacodynamics, 51. https://doi.org/10.1007/s10928-023-09892-6 DOI: https://doi.org/10.1007/s10928-023-09892-6
Sinclair, J., Butler, M., Morgan, M., & Kalvala, S. (2015). Student Engagement in computer science. Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, 2015-June, 242–247. https://doi.org/10.1145/2729094.2742586 DOI: https://doi.org/10.1145/2729094.2742586
Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4 DOI: https://doi.org/10.1016/0364-0213(88)90023-7
Velasquez-Hainao, J. D., Franco-Cardona, C. J., & Cadavid-Higuita, L. (2023). Prompt Engineering: a methodology for optimizing interactions with AI-Language Models in the field of engineering. DYNA, 1–9. DOI: https://doi.org/10.15446/dyna.v90n230.111700
Wang, S., Xu, T., Li, H., Zhang, C., Liang, J., Tang, J., Yu, P. S., & Wen, Q. (2024). Large Language Models for Education: A Survey and Outlook. http://arxiv.org/abs/2403.18105
Yazidi, A., Abolpour Mofrad, A., Goodwin, M., Hammer, H. L., & Arntzen, E. (2020).
Balanced difficulty task finder: an adaptive recommendation method for learning tasks based on the concept of state of flow. Cognitive Neurodynamics, 14(5), 675–687. https://doi.org/10.1007/s11571-020-09624-3 DOI: https://doi.org/10.1007/s11571-020-09624-3
Zhan, Z., He, L., Tong, Y., Liang, X., Guo, S., & Lan, X. (2022). The effectiveness of gamification in programming education: Evidence from a meta-analysis. In Computers and Education: Artificial Intelligence (Vol. 3). Elsevier B.V. https://doi.org/10.1016/j.caeai.2022.100096 DOI: https://doi.org/10.1016/j.caeai.2022.100096
Zhang, R., Guo, J., Chen, L., Fan, Y., & Cheng, X. (2022). A Review on Question Generation from Natural Language Text. ACM Transactions on Information Systems, 40(1). https://doi.org/10.1145/3468889 DOI: https://doi.org/10.1145/3468889
Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., & Ba, J. (2022). Large Language Models Are Human-Level Prompt Engineers. http://arxiv.org/abs/2211.01910
Zu, T., Munsell, J., & Rebello, N. S. (2021). Subjective Measure of Cognitive Load Depends on Participants’ Content Knowledge Level. Frontiers in Education, 6, 647097. https://doi.org/10.3389/feduc.2021.647097 DOI: https://doi.org/10.3389/feduc.2021.647097
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Christian Lopez (Autor de Correspondencia); Miles Morrison, Matthew Deacon
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Datos de los fondos
-
Fondo Nacional de Innovación y Desarrollo Científico–Tecnológico
Números de la subvención 2022-3A1-112