Artificial Intelligence and Decision-Making in Business Management: A Bibliometric Review of the Last Decade
DOI:
https://doi.org/10.31637/epsir-2026-1630Keywords:
Artificial Intelligence, Decision-making, Process automation, Machine learning, Risk assessment, Business Management, BusinessAbstract
Introduction: Artificial intelligence (AI) is transforming business decision-making by improving efficiency and reducing human error, although its adoption faces challenges such as lack of knowledge and cybersecurity risks. Methodology: This study employs a bibliometric approach using the Scopus database to review recent research on the application of AI in the business field, identifying trends, authors, and leading institutions in the field. Results: The findings show that China, India, and the United States lead in scientific production, with China also standing out in patent registration. The most relevant areas are machine learning and big data, applied in financial management, risk assessment, and strategic decision optimisation. Discussion: The review highlights the need to strengthen international collaboration for technological development, as well as to address barriers such as the shortage of specialised knowledge and challenges in digital security. Conclusions: The study emphasises the importance of continuing to research and overcome obstacles in order to fully exploit the potential of artificial intelligence in businesses, consolidating it as a key tool for automation, financial prediction and strategic decision-making.
Downloads
References
Ahuja, L., Thakur, A., Seth, A. y Seth, K. (2024). Integrating Cloud, Blockchain and AI Technologies-Challenges and Scope. Lecture Notes in Electrical Engineering, 377-386. https://doi.org/10.1007/978-981-97-1682-1_31 DOI: https://doi.org/10.1007/978-981-97-1682-1_31
Agrawal, A., Gans, J. S. y Goldfarb, A. (2020). The economics of artificial intelligence: An agenda. University of Chicago Press. https://doi.org/10.7208/9780226613475 DOI: https://doi.org/10.7208/chicago/9780226613475.001.0001
Bhatt, V. (2021). Artificial intelligence and its impact on financial decision-making. Journal of Financial Economics, 45(3), 198-213. https://doi.org/10.1016/j.jfineco.2021.03.007 DOI: https://doi.org/10.1016/j.jfineco.2021.03.007
Börner, K., Chen, C. y Boyack, K. W. (2010). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179-255. https://doi.org/10.1002/aris.1440370106 DOI: https://doi.org/10.1002/aris.1440370106
Chen, C., Ibekwe-SanJuan, F. y Hou, J. (2016). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386-1409. https://doi.org/10.1002/asi.21309 DOI: https://doi.org/10.1002/asi.21309
CSET. (2023). Comparing U.S. and Chinese contributions to high-impact AI. Georgetown University. https://acortar.link/9QxESw
Darias Pérez, S. (2023). El impacto de la IA en la toma de decisiones empresariales. Intelequia Cloud Solutions. https://acortar.link/8LP91k
El País. (2023). El impacto de la IA en la toma de decisiones: Ventajas y retos. EL PAÍS Profesional. https://acortar.link/8Z42p5
Espina, L., Noroño, J., Gutiérrez, H., Dworaczek, H., Solier, Y., Cervera, L. y Rio, J. (2023). Which Industrial Sectors Are Affected by Artificial Intelligence? A Bibliometric Analysis of Trends and Perspectives. Sustainability. https://doi.org/10.3390/su151612176 DOI: https://doi.org/10.3390/su151612176
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A. y Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338-342. https://doi.org/10.1096/fj.07-9492LSF DOI: https://doi.org/10.1096/fj.07-9492LSF
Giudici, P. y Raffinetti, E. (2023). SAFE Artificial Intelligence in finance. Finance Research Letters. https://doi.org/10.1016/j.frl.2023.104088 DOI: https://doi.org/10.2139/ssrn.4362034
Giudici, P., Centurelli, M. y Turchetta, S. (2024). Artificial Intelligence risk measurement. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2023.121220 DOI: https://doi.org/10.1016/j.eswa.2023.121220
Giudici, P., Gramegna, A. y Raffinetti, E. (2023). Machine Learning Classification Model Comparison. Socio-Economic Planning Sciences. https://doi.org/10.1016/j.seps.2023.101560 DOI: https://doi.org/10.1016/j.seps.2023.101560
Gupta, A. y Kapoor, M. (2023). AI in financial risk management: Transforming decision-making in a globalized economy. Finance & Economics Review, 54(2), 112-130. https://doi.org/10.1145/financial_risk2023
Khattak, B., Shafi, I., Khan, A., Flores, E., Lara, R., Samad, M. y Ashraf, I. (2023). A Systematic Survey of AI Models in Financial Market Forecasting for Profitability Analysis. IEEE Access, 125359-125380. https://doi.org/10.1109/ACCESS.2023.3330156 DOI: https://doi.org/10.1109/ACCESS.2023.3330156
Lin, W., Zhang, S. y Li, T. (2021). AI-based risk assessment in the financial sector: Current status and future perspectives. Journal of Financial Risk Management, 12(1), 45-60. https://doi.org/10.4236/jfrm.2021.121005
Liu, Y., Luo, J. y Zhou, Z. (2023). Decision support systems integrated with AI: New trends and challenges. Journal of Industrial Engineering and Management, 19(2), 34-56. https://doi.org/10.1016/j.jiem.2023.06.015
Mendez, A., Calvo, L., Jimenez, E., Alfaro, J., Campana, S. y Diaz, A. (2023). Platform for the recognition of people and their emotions for SMEs and Startups. Iberian Conference on Information Systems and Technologies. https://doi.org/10.23919/CISTI58278.2023.10211990 DOI: https://doi.org/10.23919/CISTI58278.2023.10211990
Ojha, N., Pandita, A. y Vaish, A. (2024). Cyber-security challenges for artificial intelligence-empowered electric vehicles—analysis and current status. Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems: Fundamentals, Technologies, and Solutions, 317-346. https://doi.org/10.1016/B978-0-443-23814-7.00012-2 DOI: https://doi.org/10.1016/B978-0-443-23814-7.00012-2
Parkar, E., Gite, S., Mishra, S., Pradhan, B. y Alamri, A. (2024). Comparative study of deep learning explainability and causal ai for fraud detection. International Journal on Smart Sensing and Intelligent Systems. https://doi.org/10.2478/ijssis-2024-0023 DOI: https://doi.org/10.2478/ijssis-2024-0023
Power, D. J. (2020). Decision support systems: Concepts and resources for managers. Greenwood Publishing Group. https://doi.org/10.1017/dss2020
Qureshi, N., Choudhuri, S., Nagamani, Y., Varma, R. y Shah, R. (2024). Ethical Considerations of AI in Financial Services: Privacy, Bias, and Algorithmic Transparency. 2024 International Conference on Knowledge Engineering and Communication Systems. https://doi.org/10.1109/ICKECS61492.2024.10616483 DOI: https://doi.org/10.1109/ICKECS61492.2024.10616483
Sarin, S., Singh, S., Kumar, S., Goyal, S., Gupta, B., Alhalabi, W. y Arya, V. (2024). Unleashing the Power of Multi-Agent Reinforcement Learning for Algorithmic Trading in the Digital Financial Frontier and Enterprise Information Systems. Computers, Materials and Continua, 3123-3138. https://doi.org/10.32604/cmc.2024.051599 DOI: https://doi.org/10.32604/cmc.2024.051599
Sharda, R., Delen, D. y Turban, E. (2021). Business intelligence, analytics, and decision support. Pearson Education. https://doi.org/10.1080/doi.book.biadss
Sharma, P. (2023). AI-based financial forecasting in emerging economies: A comparative study between India and China. Asian Business Review, 29(5), 151-170. https://doi.org/10.1056/asian_business_forecast2023
Shu, C., Chen, Y., Tan, C., Luo, Y. y Dou, H. (2024). Enhancing trust transfer in supply chain finance: a blockchain-based transitive trust model. Journal of Cloud Computing. https://doi.org/10.1186/s13677-023-00557-w DOI: https://doi.org/10.1186/s13677-023-00557-w
Suhel, S., Shukla, V., Vyas, S. y Mishra, V. (2020). Conversation to Automation in Banking through Chatbot Using Artificial Machine Intelligence Language. ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization, 611-618. https://doi.org/10.1109/ICRITO48877.2020.9197825 DOI: https://doi.org/10.1109/ICRITO48877.2020.9197825
Talin, B. (2023). La inteligencia artificial en la toma de decisiones empresariales. MoreThanDigital Insights. https://acortar.link/EdlRGe
Tsai, p., Wang, W., Chang, J., Chen, Z. y Zhang, Y. (2017). Utilizing IABC and time series model in investigating the influence of adding monitoring indicator for foreign exchange rate forecasting. Advances in Intelligent Systems and Computing, 183-191. https://doi.org/10.1007/978-3-319-48490-7_22 DOI: https://doi.org/10.1007/978-3-319-48490-7_22
Tsai, P., Yang, L., Zhang, J., Zhang, Y., Chang, J. y Istanda, V. (2017). Composing high event impact resistible model by interactive artificial bee colony for the foreign exchange rate forecasting. Advances in Intelligent Systems and Computing, 760-770. https://doi.org/10.1007/978-3-319-48308-5_73 DOI: https://doi.org/10.1007/978-3-319-48308-5_73
Tsai, P., Zhang, J., He, Y., Chang, J., Yang, L. y Yang , W. (2017). IABC robotic evolutionary model for the foreign exchange rate prediction in Central America trading agreement events. 2016 IEEE Symposium Series on Computational Intelligence. https://doi.org/10.1109/SSCI.2016.7850246 DOI: https://doi.org/10.1109/SSCI.2016.7850246
Van Eck, N. J. y Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538.
https://doi.org/10.1007/s11192-009-0146-3 DOI: https://doi.org/10.1007/s11192-009-0146-3
Wang, S., Asif, M., Shahzad, M. y Ashfaq, M. (2024). Data privacy and cybersecurity challenges in the digital transformation of the banking sector. Computers and Security. https://doi.org/10.1016/j.cose.2024.104051 DOI: https://doi.org/10.1016/j.cose.2024.104051
Zapata Cortés, J. A. (2020). Inteligencia artificial para la toma de decisiones. Revista Perspectiva Empresarial, 7(2-1), 3-5. Fundación Universitaria CEIPA. https://www.redalyc.org/pdf/6722/672271538001.pdf DOI: https://doi.org/10.16967/23898186.663
Zhu, J. y Liu, W. (2020). A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics, 123(1), 321-335.
https://doi.org/10.1007/s11192-020-03387-8 DOI: https://doi.org/10.1007/s11192-020-03387-8
Zhu, J. y Liu, W. (2022). Machine learning applications in financial decision-making: A comprehensive review. Journal of Computational Finance, 19(2), 87-103. https://doi.org/10.1016/j.jcf.2022.05.011 DOI: https://doi.org/10.1016/j.jcf.2022.05.011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Oscar Mauricio Bedoya Sánchez, Sandra Milena Pérez García, Heidy Lorena Osorio Oviedo, Juan Felipe Guzmán Pacheco

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
