Influencia de factores sociales y tecnológicos en la intención de uso continuo de billeteras digitales: un modelo de ecuaciones estructurales
DOI:
https://doi.org/10.31637/epsir-2026-2102Parole chiave:
billeteras digitales, utilidad percibida, facilidad de uso percibida, innovación personal, intensión continua de uso, factores sociales-tecnológicos, modelo UTAUT, modelo TAMAbstract
Introducción: Las billeteras digitales contribuyen a la digitalización de transacciones comerciales mejorando su eficiencia. El estudio analizo los factores que influyen en la intención de uso de tecnología de las billeteras digitales como medio de pago en usuarios de la ciudad de Arequipa. Metodología: Se abordo un diseño con enfoque cuantitativo, no experimental-transversal y alcance correlacional-explicativo. Se encuesto a 440 usuarios de billeteras digitales, se realizó un AFE y modelado de PLS-SEM, aplicando método de bootstrapping para ratificar las hipótesis planteadas. Resultados: Los hallazgos muestran que la utilidad percibida y las condiciones facilitadoras son los principales predictores de la intención continua de uso de billeteras digitales. La facilidad de uso percibida tiene impacto significativo en la utilidad percibida y la intención de continua de uso. La innovación personal influyó positivamente en la intención continua de uso, mientras que la influencia social no resultó significativa. Discusión: Estos resultados muestran que los factores sociales y tecnológicos generan un impacto significativo sobre intensión continua de uso, sus ventajas son elementos clave para dicha adopción en los usuarios. Conclusiones: Se concluye que la usabilidad, el soporte estructural y la innovación personal son clave para promover la adopción sostenida de las billeteras digitales.
Downloads
Riferimenti bibliografici
Abdalla, R. A. (2024). Examining awareness, social influence, and perceived enjoyment in the TAM framework as determinants of ChatGPT. Personalization as a moderator. Journal Of Open Innovation Technology Market And Complexity, 10(3), 100327. https://doi.org/10.1016/j.joitmc.2024.100327 DOI: https://doi.org/10.1016/j.joitmc.2024.100327
Adiani, W., Aprianingsih, A., Fachira, I., Debby, T. y Maharatie, A. P. (2023). Social influence, financial benefit, and e-wallet multi-brand loyalty: The mediating impact of commitment. Cogent Business y Management, 11(1). https://doi.org/10.1080/23311975.2023.2290228 DOI: https://doi.org/10.1080/23311975.2023.2290228
Agarwal, R. y Prasad, J. (1998). A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology. Information Systems Research, 9(2), 204-215. https://doi.org/10.1287/isre.9.2.204 DOI: https://doi.org/10.1287/isre.9.2.204
Andrew, J. V., Ambad, S. N. A. y Tan, K. E. (2020). A Model of Factors Influencing Consumersâ€TM Intention to Use e-Wallet System in Malaysia: A Systematic Review. Malaysian Journal Of Business And Economics (MJBE), 6(2), 53. https://doi.org/10.51200/mjbe.v0i0.2172 DOI: https://doi.org/10.51200/mjbe.v0i0.2172
Al-Adwan, A. S., Li, N., Al-Adwan, A., Abbasi, G. A., Albelbisi, N. A. y Habibi, A. (2023). “Extending the Technology Acceptance Model (TAM) to Predict University Students’ Intentions to Use Metaverse-Based Learning Platforms”. Education And Information Technologies, 28(11), 15381-15413. https://doi.org/10.1007/s10639-023-11816-3 DOI: https://doi.org/10.1007/s10639-023-11816-3
Al‐maghrabi, T., Dennis, C. y Halliday, S. V. (2010). Antecedents of continuance intentions towards e‐shopping: the case of Saudi Arabia. Journal Of Enterprise Information Management, 24(1), 85-111. https://doi.org/10.1108/17410391111097447 DOI: https://doi.org/10.1108/17410391111097447
Asadi, S., Nilashi, M., Iranmanesh, M., Ghobakhloo, M., Samad, S., Alghamdi, A., Almulihi, A., y Mohd, S. (2021). Drivers and barriers of electric vehicle usage in Malaysia: A DEMATEL approach. Resources Conservation And Recycling, 177, 105965. https://doi.org/10.1016/j.resconrec.2021.105965 DOI: https://doi.org/10.1016/j.resconrec.2021.105965
Ayyub, S., Xuhui, W., Asif, M. y Ayyub, R. M. (2019). Determinants of intention to use Islamic banking. International Journal Of Islamic And Middle Eastern Finance And Management, 13(1), 147-163. https://doi.org/10.1108/imefm-05-2017-0135 DOI: https://doi.org/10.1108/IMEFM-05-2017-0135
Ba, S. y Johansson, W. C. (2008). An Exploratory Study of the Impact of e‐Service Process on Online Customer Satisfaction. Production And Operations Management, 17(1), 107-119. https://doi.org/10.3401/poms.1070.0006 DOI: https://doi.org/10.3401/poms.1070.0006
Barkhordari, M., Nourollah, Z., Mashayekhi, H., Mashayekhi, Y. y Ahangar, M. S. (2016). Factors influencing adoption of e-payment systems: an empirical study on Iranian customers. Information Systems And e-Business Management, 15(1), 89-116. https://doi.org/10.1007/s10257-016-0311-1 DOI: https://doi.org/10.1007/s10257-016-0311-1
Beldad, A. D. y Hegner, S. M. (2017). Expanding the Technology Acceptance Model with the Inclusion of Trust, Social Influence, and Health Valuation to Determine the Predictors of German Users’ Willingness to Continue using a Fitness App: A Structural Equation Modeling Approach. International Journal Of Human-Computer Interaction, 34(9), 882-893. https://doi.org/10.1080/10447318.2017.1403220 DOI: https://doi.org/10.1080/10447318.2017.1403220
Brown, N. y Venkatesh, N. (2005). Model of Adoption of Technology in Households: A Baseline Model Test and Extension Incorporating Household Life Cycle. MIS Quarterly, 29(3), 399. https://doi.org/10.2307/25148690 DOI: https://doi.org/10.2307/25148690
Brusch, I. y Rappel, N. (2019). Exploring the acceptance of instant shopping – An empirical analysis of the determinants of user intention. Journal Of Retailing And Consumer Services, 54, 101936. https://doi.org/10.1016/j.jretconser.2019.101936 DOI: https://doi.org/10.1016/j.jretconser.2019.101936
Chaouali, W., Yahia, I. B., y Souiden, N. (2015). The interplay of counter-conformity motivation, social influence, and trust in customers’ intention to adopt Internet banking services: The case of an emerging country. Journal Of Retailing And Consumer Services, 28, 209-218. https://doi.org/10.1016/j.jretconser.2015.10.007 DOI: https://doi.org/10.1016/j.jretconser.2015.10.007
Chawla, D. y Joshi, H. (2020). Role of Mediator in Examining the Influence of Antecedents of Mobile Wallet Adoption on Attitude and Intention. Global Business Review, 24(4), 609-625. https://doi.org/10.1177/0972150920924506 DOI: https://doi.org/10.1177/0972150920924506
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008 DOI: https://doi.org/10.2307/249008
Davis, F. D. y Granić, A. (2024). The technology acceptance model. En Human-computer interaction series. https://doi.org/10.1007/978-3-030-45274-2 DOI: https://doi.org/10.1007/978-3-030-45274-2
Di Pietro, L., Mugion, R. G., Mattia, G., Renzi, M. y Toni, M. (2015). The Integrated Model on Mobile Payment Acceptance (IMMPA): An empirical application to public transport. Transportation Research Part C Emerging Technologies, 56, 463-479. https://doi.org/10.1016/j.trc.2015.05.001 DOI: https://doi.org/10.1016/j.trc.2015.05.001
Fishbein, M. y Ajzen, I. (2011). Predicting and Changing Behavior. https://doi.org/10.4324/9780203838020 DOI: https://doi.org/10.4324/9780203838020
Fornell, C. y Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal Of Marketing Research, 18(1), 39. https://doi.org/10.2307/3151312 DOI: https://doi.org/10.2307/3151312
Foroughi, B., Iranmanesh, M. y Hyun, S. S. (2019). Understanding the determinants of mobile banking continuance usage intention. Journal Of Enterprise Information Management, 32(6), 1015-1033. https://doi.org/10.1108/jeim-10-2018-0237 DOI: https://doi.org/10.1108/JEIM-10-2018-0237
Gupta, S., Hassen, M., Pandey, D. K. y Sahu, G. P. (2024). Cognitive, affective, and normative factors affecting digital insurance adoption among persons with disabilities: A two-stage SEM-ANN analysis. Global Finance Journal, 101048. https://doi.org/10.1016/j.gfj.2024.101048 DOI: https://doi.org/10.1016/j.gfj.2024.101048
Hair, J. F. (2011). Multivariate Data Analysis: An Overview. En International Encyclopedia of Statistical Science (pp. 904-907). https://doi.org/10.1007/978-3-642-04898-2_395 DOI: https://doi.org/10.1007/978-3-642-04898-2_395
Hair, J. F., Howard, M. C. y Nitzl, C. (2019). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal Of Business Research, 109, 101-110. https://doi.org/10.1016/j.jbusres.2019.11.069 DOI: https://doi.org/10.1016/j.jbusres.2019.11.069
Hashim, N. H., Chan, T. J. y Li, P. (2023). Factors affecting the adoption of e-wallets to enter cashless society: An integration approach. International Journal Of Data And Network Science, 7(4), 1849-1860. https://doi.org/10.5267/j.ijdns.2023.7.007 DOI: https://doi.org/10.5267/j.ijdns.2023.7.007
Hassan, M. S., Islam, M. A., Yusof, M. F. B., Nasir, H. y Huda, N. (2023). Investigating the Determinants of Islamic Mobile FinTech Service Acceptance: A Modified UTAUT2 Approach. Risks, 11(2), 40. https://doi.org/10.3390/risks11020040 DOI: https://doi.org/10.3390/risks11020040
Hemmatpour, B., Heydari, M. B. y Rabieenia, M. (2024). Psychometric evaluation of the perfectionism scale’s characteristics regarding physical appearance in patients seeking rhinoplasty surgery. JPRAS Open, 41, 194-202. https://doi.org/10.1016/j.jpra.2024.05.004 DOI: https://doi.org/10.1016/j.jpra.2024.05.004
Hendrawan, E., Irianto, S. Y. y Fitria, F. (2021). MEASUREMENT OF ELECTRONIC LEARNING PERFORMANCE USING THE TECHNOLOGY ACCEPTANCE MODEL (TAM) METHOD AT THE VOCATIONAL SCHOOL OF PATRIA GADINGREJO. Jurnal TAM (Technology Acceptance Model), 12(1), 48. https://doi.org/10.56327/jurnaltam.v12i1.1029 DOI: https://doi.org/10.56327/jurnaltam.v12i1.1029
Henseler, J., Ringle, C. M. y Sarstedt, M. (2014). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal Of The Academy Of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8 DOI: https://doi.org/10.1007/s11747-014-0403-8
Iranmanesh, M., Min, C. L., Senali, M. G., Nikbin, D. y Foroughi, B. (2022). Determinants of switching intention from web-based stores to retail apps: Habit as a moderator. Journal Of Retailing And Consumer Services, 66, 102957. https://doi.org/10.1016/j.jretconser.2022.102957 DOI: https://doi.org/10.1016/j.jretconser.2022.102957
IPSOS, (2024). Estudio Medios de Pago en Latinoamérica – 2° edición, 2024. Red Latinoamericana de Profesionales de Marketing. https://bit.ly/4gPPN4E
Kraiwanit, T., Limna, P. y Wattanasin, P. (2024). Digital wallet dynamics: Perspectives on potential Worldcoin adoption factors in a developing country’s FinTech Sector. Journal Of Open Innovation Technology Market And Complexity, 10(2), 100287. https://doi.org/10.1016/j.joitmc.2024.100287 DOI: https://doi.org/10.1016/j.joitmc.2024.100287
Liébana-Cabanillas, F., Sánchez-Fernández, J. y Muñoz-Leiva, F. (2014). Antecedents of the adoption of the new mobile payment systems: The moderating effect of age. Computers In Human Behavior, 35, 464-478. https://doi.org/10.1016/j.chb.2014.03.022 DOI: https://doi.org/10.1016/j.chb.2014.03.022
Limayem, N., Hirt, N. y Cheung, N. (2007). How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Quarterly, 31(4), 705. https://doi.org/10.2307/25148817 DOI: https://doi.org/10.2307/25148817
Liu, N. G. y Tai, N. P. T. (2016). A Study of Factors Affecting the Intention to Use Mobile Payment Services in Vietnam. Economics World, 4(6).
https://doi.org/10.17265/2328-7144/2016.06.001 DOI: https://doi.org/10.17265/2328-7144/2016.06.001
Lu, J., Yao, J. E. y Yu, C. (2005). Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. The Journal Of Strategic Information Systems, 14(3), 245-268. https://doi.org/10.1016/j.jsis.2005.07.003 DOI: https://doi.org/10.1016/j.jsis.2005.07.003
Ly, R. y Ly, B. (2024). Digital Payment Systems in an Emerging Economy. Computers In Human Behavior Reports, 100517. https://doi.org/10.1016/j.chbr.2024.100517 DOI: https://doi.org/10.1016/j.chbr.2024.100517
Manrai, R., Goel, U. y Yadav, P. D. (2021). Factors affecting adoption of digital payments by semi-rural Indian women: extension of UTAUT-2 with self-determination theory and perceived credibility. Aslib Journal Of Information Management, 73(6), 814-838. https://doi.org/10.1108/ajim-12-2020-0396 DOI: https://doi.org/10.1108/AJIM-12-2020-0396
Marakarkandy, B. Yajnik, N., y Dasgupta, C. (2017). Enabling internet banking adoption. Journal Of Enterprise Information Management, 30(2), 263-294. https://doi.org/10.1108/jeim-10-2015-0094 DOI: https://doi.org/10.1108/JEIM-10-2015-0094
Martins, C., Oliveira, T. y Popovič, A. (2013). Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal Of Information Management, 34(1), 1-13. https://doi.org/10.1016/j.ijinfomgt.2013.06.002 DOI: https://doi.org/10.1016/j.ijinfomgt.2013.06.002
Mendoza, M. (2024, 14 junio). En Perú, las billeteras digitales se usan 20 veces más que en 2020. ComputerWeekly.es. https://bit.ly/3DMIDzh
Moorthy, K., Chiang, O. Y., Kamarudin, A. A., T’ing, L. C., Mei, C. Y. y Johanthan, S. (2021). Factors That Influence the Adoption of E-Wallets by the Malaysians. International Journal Of E-Adoption, 13(2), 78-95. https://doi.org/10.4018/ijea.2021070105 DOI: https://doi.org/10.4018/IJEA.2021070105
Munoz-Leiva, F., Climent-Climent, S. y Liébana-Cabanillas, F. (2016). Determinants of Intention to Use the Mobile Banking Apps: An Extension of the Classic TAM Model. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3489124 DOI: https://doi.org/10.2139/ssrn.3489124
Nikou, S. A. y Economides, A. A. (2017). Mobile-based assessment: Investigating the factors that influence behavioral intention to use. Computers y Education, 109, 56-73. https://doi.org/10.1016/j.compedu.2017.02.005 DOI: https://doi.org/10.1016/j.compedu.2017.02.005
Nizam, F., Hwang, H. J. y Valaei, N. (2018). Measuring the Effectiveness of E-Wallet in Malaysia. En Studies in computational intelligence (pp. 59-69). https://doi.org/10.1007/978-3-319-96803-2_5 DOI: https://doi.org/10.1007/978-3-319-96803-2_5
Oveisi, M., Alizadeh, H., Lorestani, S. A., Esmaili, A., Sadeghnejad, N., Piri, R., Gonzalez-Andujar, J. L. y Müller-Schärer, H. (2024). Triangle area model (TAM) for predicting germination: An approach to enhance hydrothermal time model applications. Current Plant Biology, 39, 100356. https://doi.org/10.1016/j.cpb.2024.100356 DOI: https://doi.org/10.1016/j.cpb.2024.100356
Povey, R., Conner, M., Sparks, P., James, R., y Shepherd, R. (2000). Application of the Theory of Planned Behaviour to two dietary behaviours: Roles of perceived control and self‐efficacy. British Journal Of Health Psychology, 5(2), 121-139. https://doi.org/10.1348/135910700168810 DOI: https://doi.org/10.1348/135910700168810
Rahi, S., Khan, M. M. y Alghizzawi, M. (2020). Extension of technology continuance theory (TCT) with task technology fit (TTF) in the context of Internet banking user continuance intention. International Journal Of Quality y Reliability Management, 38(4), 986-1004. https://doi.org/10.1108/ijqrm-03-2020-0074 DOI: https://doi.org/10.1108/IJQRM-03-2020-0074
Rahi, S., Mansour, M. M. O., Alghizzawi, M. y Alnaser, F. M. (2019). Integration of UTAUT model in internet banking adoption context. Journal Of Research In Interactive Marketing, 13(3), 411-435. https://doi.org/10.1108/jrim-02-2018-0032 DOI: https://doi.org/10.1108/JRIM-02-2018-0032
Rahman, M., Yee, H. P., Masud, M. A. K. y Uzir, M. U. H. (2024). Examining the dynamics of mobile banking app. Adoption during the COVID-19 pandemic: A digital shift in the crisis. Digital Business, 4(2), 100088. https://doi.org/10.1016/j.digbus.2024.100088 DOI: https://doi.org/10.1016/j.digbus.2024.100088
Rauniar, R., Rawski, G., Yang, J. y Johnson, B. (2014). Technology acceptance model (TAM) and social media usage: an empirical study on Facebook. Journal Of Enterprise Information Management, 27(1), 6-30. https://doi.org/10.1108/jeim-04-2012-0011 DOI: https://doi.org/10.1108/JEIM-04-2012-0011
Roemer, E., Schuberth, F. y Henseler, J. (2021). HTMT2–an improved criterion for assessing discriminant validity in structural equation modeling. Industrial Management y Data Systems, 121(12), 2637-2650. https://doi.org/10.1108/imds-02-2021-0082 DOI: https://doi.org/10.1108/IMDS-02-2021-0082
Rogers, EM, 1995. Difusión de innovaciones, 4ª ed. The Free Press, Nueva York, NY
Senali, M. G., Iranmanesh, M., Ismail, F. N., Rahim, N. F. A., Khoshkam, M., y Mirzaei, M. (2022). Determinants of Intention to Use e-Wallet: Personal Innovativeness and Propensity to Trust as Moderators. International Journal Of Human-Computer Interaction, 39(12), 2361-2373. https://doi.org/10.1080/10447318.2022.2076309 DOI: https://doi.org/10.1080/10447318.2022.2076309
Shareef, M. A., Kumar, V., Dwivedi, Y. K., Kumar, U., Akram, M. S. y Raman, R. (2020). A new health care system enabled by machine intelligence: Elderly people’s trust or losing self control. Technological Forecasting And Social Change, 162, 120334. https://doi.org/10.1016/j.techfore.2020.120334 DOI: https://doi.org/10.1016/j.techfore.2020.120334
Shin, D. (2009). Towards an understanding of the consumer acceptance of mobile wallet. Computers In Human Behavior, 25(6), 1343-1354. https://doi.org/10.1016/j.chb.2009.06.001 DOI: https://doi.org/10.1016/j.chb.2009.06.001
Singh, N. y Sinha, N. (2019). How perceived trust mediates merchant’s intention to use a mobile wallet technology. Journal Of Retailing And Consumer Services, 52, 101894. https://doi.org/10.1016/j.jretconser.2019.101894 DOI: https://doi.org/10.1016/j.jretconser.2019.101894
Singh, S., Sahni, M. M. y Kovid, R. K. (2021). Exploring trust and responsiveness as antecedents for intention to use FinTech services. International Journal Of Economics And Business Research, 21(2), 254. https://doi.org/10.1504/ijebr.2021.113152 DOI: https://doi.org/10.1504/IJEBR.2021.113152
Slade, E. L., Williams, M. D. y Dwivedi, Y. K. (2013). Mobile payment adoption: Classification and review of the extant literature. The Marketing Review, 13(2), 167-190. https://doi.org/10.1362/146934713x13699019904687 DOI: https://doi.org/10.1362/146934713X13699019904687
Statista. (2024). Digital Payments - Peru | Statista market forecast. https://www.statista.com/outlook/dmo/fintech/digital-payments/peru
Stephen, A. T. (2015). The role of digital and social media marketing in consumer behavior. Current Opinion In Psychology, 10, 17-21. https://doi.org/10.1016/j.copsyc.2015.10.016 DOI: https://doi.org/10.1016/j.copsyc.2015.10.016
Thuy, N. T. T. (2023). Digital Technology Readiness: The Moderating Role of Employees’ Innovativeness in the Technology Acceptance Model. En Advances in economics, business and management research/Advances in Economics, Business and Management Research (pp. 132-141). https://doi.org/10.2991/978-94-6463-348-1_13 DOI: https://doi.org/10.2991/978-94-6463-348-1_13
Trivelli, C. (2018, 15 abril). El primer año de Bim, la billetera electrónica del Modelo Perú. Blog | Portal FinDev. https://bit.ly/4j3AuXp
Truc, L. T. (2024). Empowering tomorrow: Unleashing the power of e-wallets with adoption readiness, personal innovativeness, and perceived risk to client’s intention. Journal Of Open Innovation Technology Market And Complexity, 10(3), 100322. https://doi.org/10.1016/j.joitmc.2024.100322 DOI: https://doi.org/10.1016/j.joitmc.2024.100322
Venkatesh, N., Morris, N., Davis, N. y Davis, N. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540 DOI: https://doi.org/10.2307/30036540
Venkatesh, N., Thong, N. y Xu, N. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157. https://doi.org/10.2307/41410412 DOI: https://doi.org/10.2307/41410412
Venkatesh, V. y Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39(2), 273-315.
https://doi.org/10.1111/j.1540-5915.2008.00192.x DOI: https://doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V. y Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926 DOI: https://doi.org/10.1287/mnsc.46.2.186.11926
Verkijika, S. F. (2018). Factors influencing the adoption of mobile commerce applications in Cameroon. Telematics And Informatics, 35(6), 1665-1674. https://doi.org/10.1016/j.tele.2018.04.012 DOI: https://doi.org/10.1016/j.tele.2018.04.012
Widodo, M., Irawan, M. I. y Sukmono, R. A. (2019). Extending UTAUT2 to Explore Digital Wallet Adoption in Indonesia. 2018 International Conference On Information And Communications Technology (ICOIACT). https://doi.org/10.1109/icoiact46704.2019.8938415 DOI: https://doi.org/10.1109/ICOIACT46704.2019.8938415
Yang, M., Mamun, A. A., Mohiuddin, M., Nawi, N. C. y Zainol, N. R. (2021). Cashless Transactions: A Study on Intention and Adoption of e-Wallets. Sustainability, 13(2), 831. https://doi.org/10.3390/su13020831 DOI: https://doi.org/10.3390/su13020831
Downloads
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2025 Jorge Eloy Rojas-Nina, Dino Franco Cuti-Saico, Lismer Yamil Laura-Pumaleque, Francisco Fredy Ayala Cochón, Miller Edgar Vargas Vizcarra

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).