Inteligencia artificial y toma de decisiones en Gestión empresarial; una revisión bibliométrica de la última década

Autores/as

DOI:

https://doi.org/10.31637/epsir-2026-1630

Palabras clave:

Inteligencia Artificial, Toma de decisiones, Automatización de procesos, Aprendizaje automático, Evaluación de riesgos, Gestión Empresarial, Negocios

Resumen

Introducción: La inteligencia artificial (IA) está transformando la toma de decisiones empresariales al mejorar la eficiencia y reducir errores humanos, aunque su adopción enfrenta desafíos como la falta de conocimiento y los riesgos en ciberseguridad. Metodología: Este estudio emplea un enfoque bibliométrico utilizando la base de datos Scopus para revisar investigaciones recientes sobre la aplicación de la IA en el ámbito empresarial, identificando tendencias, autores e instituciones líderes en el campo. Resultados: Los hallazgos muestran que China, India y Estados Unidos lideran la producción científica, con China destacándose también en el registro de patentes. Las áreas más relevantes son machine learning y big data, aplicadas en gestión financiera, evaluación de riesgos y optimización de decisiones estratégicas. Discusión: La revisión evidencia la necesidad de fortalecer la colaboración internacional para el desarrollo tecnológico, así como de abordar barreras como la escasez de conocimiento especializado y los desafíos en seguridad digital. Conclusiones: El estudio resalta la importancia de continuar investigando y superando obstáculos para aprovechar plenamente el potencial de la inteligencia artificial en las empresas, consolidándola como una herramienta clave para la automatización, la predicción financiera y la toma de decisiones estratégicas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahuja, L., Thakur, A., Seth, A. y Seth, K. (2024). Integrating Cloud, Blockchain and AI Technologies-Challenges and Scope. Lecture Notes in Electrical Engineering, 377-386. https://doi.org/10.1007/978-981-97-1682-1_31 DOI: https://doi.org/10.1007/978-981-97-1682-1_31

Agrawal, A., Gans, J. S. y Goldfarb, A. (2020). The economics of artificial intelligence: An agenda. University of Chicago Press. https://doi.org/10.7208/9780226613475 DOI: https://doi.org/10.7208/chicago/9780226613475.001.0001

Bhatt, V. (2021). Artificial intelligence and its impact on financial decision-making. Journal of Financial Economics, 45(3), 198-213. https://doi.org/10.1016/j.jfineco.2021.03.007 DOI: https://doi.org/10.1016/j.jfineco.2021.03.007

Börner, K., Chen, C. y Boyack, K. W. (2010). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179-255. https://doi.org/10.1002/aris.1440370106 DOI: https://doi.org/10.1002/aris.1440370106

Chen, C., Ibekwe-SanJuan, F. y Hou, J. (2016). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386-1409. https://doi.org/10.1002/asi.21309 DOI: https://doi.org/10.1002/asi.21309

CSET. (2023). Comparing U.S. and Chinese contributions to high-impact AI. Georgetown University. https://acortar.link/9QxESw

Darias Pérez, S. (2023). El impacto de la IA en la toma de decisiones empresariales. Intelequia Cloud Solutions. https://acortar.link/8LP91k

El País. (2023). El impacto de la IA en la toma de decisiones: Ventajas y retos. EL PAÍS Profesional. https://acortar.link/8Z42p5

Espina, L., Noroño, J., Gutiérrez, H., Dworaczek, H., Solier, Y., Cervera, L. y Rio, J. (2023). Which Industrial Sectors Are Affected by Artificial Intelligence? A Bibliometric Analysis of Trends and Perspectives. Sustainability. https://doi.org/10.3390/su151612176 DOI: https://doi.org/10.3390/su151612176

Falagas, M. E., Pitsouni, E. I., Malietzis, G. A. y Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338-342. https://doi.org/10.1096/fj.07-9492LSF DOI: https://doi.org/10.1096/fj.07-9492LSF

Giudici, P. y Raffinetti, E. (2023). SAFE Artificial Intelligence in finance. Finance Research Letters. https://doi.org/10.1016/j.frl.2023.104088 DOI: https://doi.org/10.2139/ssrn.4362034

Giudici, P., Centurelli, M. y Turchetta, S. (2024). Artificial Intelligence risk measurement. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2023.121220 DOI: https://doi.org/10.1016/j.eswa.2023.121220

Giudici, P., Gramegna, A. y Raffinetti, E. (2023). Machine Learning Classification Model Comparison. Socio-Economic Planning Sciences. https://doi.org/10.1016/j.seps.2023.101560 DOI: https://doi.org/10.1016/j.seps.2023.101560

Gupta, A. y Kapoor, M. (2023). AI in financial risk management: Transforming decision-making in a globalized economy. Finance & Economics Review, 54(2), 112-130. https://doi.org/10.1145/financial_risk2023

Khattak, B., Shafi, I., Khan, A., Flores, E., Lara, R., Samad, M. y Ashraf, I. (2023). A Systematic Survey of AI Models in Financial Market Forecasting for Profitability Analysis. IEEE Access, 125359-125380. https://doi.org/10.1109/ACCESS.2023.3330156 DOI: https://doi.org/10.1109/ACCESS.2023.3330156

Lin, W., Zhang, S. y Li, T. (2021). AI-based risk assessment in the financial sector: Current status and future perspectives. Journal of Financial Risk Management, 12(1), 45-60. https://doi.org/10.4236/jfrm.2021.121005

Liu, Y., Luo, J. y Zhou, Z. (2023). Decision support systems integrated with AI: New trends and challenges. Journal of Industrial Engineering and Management, 19(2), 34-56. https://doi.org/10.1016/j.jiem.2023.06.015

Mendez, A., Calvo, L., Jimenez, E., Alfaro, J., Campana, S. y Diaz, A. (2023). Platform for the recognition of people and their emotions for SMEs and Startups. Iberian Conference on Information Systems and Technologies. https://doi.org/10.23919/CISTI58278.2023.10211990 DOI: https://doi.org/10.23919/CISTI58278.2023.10211990

Ojha, N., Pandita, A. y Vaish, A. (2024). Cyber-security challenges for artificial intelligence-empowered electric vehicles—analysis and current status. Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems: Fundamentals, Technologies, and Solutions, 317-346. https://doi.org/10.1016/B978-0-443-23814-7.00012-2 DOI: https://doi.org/10.1016/B978-0-443-23814-7.00012-2

Parkar, E., Gite, S., Mishra, S., Pradhan, B. y Alamri, A. (2024). Comparative study of deep learning explainability and causal ai for fraud detection. International Journal on Smart Sensing and Intelligent Systems. https://doi.org/10.2478/ijssis-2024-0023 DOI: https://doi.org/10.2478/ijssis-2024-0023

Power, D. J. (2020). Decision support systems: Concepts and resources for managers. Greenwood Publishing Group. https://doi.org/10.1017/dss2020

Qureshi, N., Choudhuri, S., Nagamani, Y., Varma, R. y Shah, R. (2024). Ethical Considerations of AI in Financial Services: Privacy, Bias, and Algorithmic Transparency. 2024 International Conference on Knowledge Engineering and Communication Systems. https://doi.org/10.1109/ICKECS61492.2024.10616483 DOI: https://doi.org/10.1109/ICKECS61492.2024.10616483

Sarin, S., Singh, S., Kumar, S., Goyal, S., Gupta, B., Alhalabi, W. y Arya, V. (2024). Unleashing the Power of Multi-Agent Reinforcement Learning for Algorithmic Trading in the Digital Financial Frontier and Enterprise Information Systems. Computers, Materials and Continua, 3123-3138. https://doi.org/10.32604/cmc.2024.051599 DOI: https://doi.org/10.32604/cmc.2024.051599

Sharda, R., Delen, D. y Turban, E. (2021). Business intelligence, analytics, and decision support. Pearson Education. https://doi.org/10.1080/doi.book.biadss

Sharma, P. (2023). AI-based financial forecasting in emerging economies: A comparative study between India and China. Asian Business Review, 29(5), 151-170. https://doi.org/10.1056/asian_business_forecast2023

Shu, C., Chen, Y., Tan, C., Luo, Y. y Dou, H. (2024). Enhancing trust transfer in supply chain finance: a blockchain-based transitive trust model. Journal of Cloud Computing. https://doi.org/10.1186/s13677-023-00557-w DOI: https://doi.org/10.1186/s13677-023-00557-w

Suhel, S., Shukla, V., Vyas, S. y Mishra, V. (2020). Conversation to Automation in Banking through Chatbot Using Artificial Machine Intelligence Language. ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization, 611-618. https://doi.org/10.1109/ICRITO48877.2020.9197825 DOI: https://doi.org/10.1109/ICRITO48877.2020.9197825

Talin, B. (2023). La inteligencia artificial en la toma de decisiones empresariales. MoreThanDigital Insights. https://acortar.link/EdlRGe

Tsai, p., Wang, W., Chang, J., Chen, Z. y Zhang, Y. (2017). Utilizing IABC and time series model in investigating the influence of adding monitoring indicator for foreign exchange rate forecasting. Advances in Intelligent Systems and Computing, 183-191. https://doi.org/10.1007/978-3-319-48490-7_22 DOI: https://doi.org/10.1007/978-3-319-48490-7_22

Tsai, P., Yang, L., Zhang, J., Zhang, Y., Chang, J. y Istanda, V. (2017). Composing high event impact resistible model by interactive artificial bee colony for the foreign exchange rate forecasting. Advances in Intelligent Systems and Computing, 760-770. https://doi.org/10.1007/978-3-319-48308-5_73 DOI: https://doi.org/10.1007/978-3-319-48308-5_73

Tsai, P., Zhang, J., He, Y., Chang, J., Yang, L. y Yang , W. (2017). IABC robotic evolutionary model for the foreign exchange rate prediction in Central America trading agreement events. 2016 IEEE Symposium Series on Computational Intelligence. https://doi.org/10.1109/SSCI.2016.7850246 DOI: https://doi.org/10.1109/SSCI.2016.7850246

Van Eck, N. J. y Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538.

https://doi.org/10.1007/s11192-009-0146-3 DOI: https://doi.org/10.1007/s11192-009-0146-3

Wang, S., Asif, M., Shahzad, M. y Ashfaq, M. (2024). Data privacy and cybersecurity challenges in the digital transformation of the banking sector. Computers and Security. https://doi.org/10.1016/j.cose.2024.104051 DOI: https://doi.org/10.1016/j.cose.2024.104051

Zapata Cortés, J. A. (2020). Inteligencia artificial para la toma de decisiones. Revista Perspectiva Empresarial, 7(2-1), 3-5. Fundación Universitaria CEIPA. https://www.redalyc.org/pdf/6722/672271538001.pdf DOI: https://doi.org/10.16967/23898186.663

Zhu, J. y Liu, W. (2020). A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics, 123(1), 321-335.

https://doi.org/10.1007/s11192-020-03387-8 DOI: https://doi.org/10.1007/s11192-020-03387-8

Zhu, J. y Liu, W. (2022). Machine learning applications in financial decision-making: A comprehensive review. Journal of Computational Finance, 19(2), 87-103. https://doi.org/10.1016/j.jcf.2022.05.011 DOI: https://doi.org/10.1016/j.jcf.2022.05.011

Descargas

Publicado

2025-09-11

Cómo citar

Bedoya Sánchez, O. M., Pérez García, S. M., Osorio Oviedo, H. L., & Guzmán Pacheco, J. F. (2025). Inteligencia artificial y toma de decisiones en Gestión empresarial; una revisión bibliométrica de la última década. European Public & Social Innovation Review, 11, 1–16. https://doi.org/10.31637/epsir-2026-1630

Número

Sección

Artículos Portada