Inteligencia artificial y toma de decisiones en Gestión empresarial; una revisión bibliométrica de la última década
DOI:
https://doi.org/10.31637/epsir-2026-1630Palabras clave:
Inteligencia Artificial, Toma de decisiones, Automatización de procesos, Aprendizaje automático, Evaluación de riesgos, Gestión Empresarial, NegociosResumen
Introducción: La inteligencia artificial (IA) está transformando la toma de decisiones empresariales al mejorar la eficiencia y reducir errores humanos, aunque su adopción enfrenta desafíos como la falta de conocimiento y los riesgos en ciberseguridad. Metodología: Este estudio emplea un enfoque bibliométrico utilizando la base de datos Scopus para revisar investigaciones recientes sobre la aplicación de la IA en el ámbito empresarial, identificando tendencias, autores e instituciones líderes en el campo. Resultados: Los hallazgos muestran que China, India y Estados Unidos lideran la producción científica, con China destacándose también en el registro de patentes. Las áreas más relevantes son machine learning y big data, aplicadas en gestión financiera, evaluación de riesgos y optimización de decisiones estratégicas. Discusión: La revisión evidencia la necesidad de fortalecer la colaboración internacional para el desarrollo tecnológico, así como de abordar barreras como la escasez de conocimiento especializado y los desafíos en seguridad digital. Conclusiones: El estudio resalta la importancia de continuar investigando y superando obstáculos para aprovechar plenamente el potencial de la inteligencia artificial en las empresas, consolidándola como una herramienta clave para la automatización, la predicción financiera y la toma de decisiones estratégicas.
Descargas
Citas
Ahuja, L., Thakur, A., Seth, A. y Seth, K. (2024). Integrating Cloud, Blockchain and AI Technologies-Challenges and Scope. Lecture Notes in Electrical Engineering, 377-386. https://doi.org/10.1007/978-981-97-1682-1_31 DOI: https://doi.org/10.1007/978-981-97-1682-1_31
Agrawal, A., Gans, J. S. y Goldfarb, A. (2020). The economics of artificial intelligence: An agenda. University of Chicago Press. https://doi.org/10.7208/9780226613475 DOI: https://doi.org/10.7208/chicago/9780226613475.001.0001
Bhatt, V. (2021). Artificial intelligence and its impact on financial decision-making. Journal of Financial Economics, 45(3), 198-213. https://doi.org/10.1016/j.jfineco.2021.03.007 DOI: https://doi.org/10.1016/j.jfineco.2021.03.007
Börner, K., Chen, C. y Boyack, K. W. (2010). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179-255. https://doi.org/10.1002/aris.1440370106 DOI: https://doi.org/10.1002/aris.1440370106
Chen, C., Ibekwe-SanJuan, F. y Hou, J. (2016). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386-1409. https://doi.org/10.1002/asi.21309 DOI: https://doi.org/10.1002/asi.21309
CSET. (2023). Comparing U.S. and Chinese contributions to high-impact AI. Georgetown University. https://acortar.link/9QxESw
Darias Pérez, S. (2023). El impacto de la IA en la toma de decisiones empresariales. Intelequia Cloud Solutions. https://acortar.link/8LP91k
El País. (2023). El impacto de la IA en la toma de decisiones: Ventajas y retos. EL PAÍS Profesional. https://acortar.link/8Z42p5
Espina, L., Noroño, J., Gutiérrez, H., Dworaczek, H., Solier, Y., Cervera, L. y Rio, J. (2023). Which Industrial Sectors Are Affected by Artificial Intelligence? A Bibliometric Analysis of Trends and Perspectives. Sustainability. https://doi.org/10.3390/su151612176 DOI: https://doi.org/10.3390/su151612176
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A. y Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338-342. https://doi.org/10.1096/fj.07-9492LSF DOI: https://doi.org/10.1096/fj.07-9492LSF
Giudici, P. y Raffinetti, E. (2023). SAFE Artificial Intelligence in finance. Finance Research Letters. https://doi.org/10.1016/j.frl.2023.104088 DOI: https://doi.org/10.2139/ssrn.4362034
Giudici, P., Centurelli, M. y Turchetta, S. (2024). Artificial Intelligence risk measurement. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2023.121220 DOI: https://doi.org/10.1016/j.eswa.2023.121220
Giudici, P., Gramegna, A. y Raffinetti, E. (2023). Machine Learning Classification Model Comparison. Socio-Economic Planning Sciences. https://doi.org/10.1016/j.seps.2023.101560 DOI: https://doi.org/10.1016/j.seps.2023.101560
Gupta, A. y Kapoor, M. (2023). AI in financial risk management: Transforming decision-making in a globalized economy. Finance & Economics Review, 54(2), 112-130. https://doi.org/10.1145/financial_risk2023
Khattak, B., Shafi, I., Khan, A., Flores, E., Lara, R., Samad, M. y Ashraf, I. (2023). A Systematic Survey of AI Models in Financial Market Forecasting for Profitability Analysis. IEEE Access, 125359-125380. https://doi.org/10.1109/ACCESS.2023.3330156 DOI: https://doi.org/10.1109/ACCESS.2023.3330156
Lin, W., Zhang, S. y Li, T. (2021). AI-based risk assessment in the financial sector: Current status and future perspectives. Journal of Financial Risk Management, 12(1), 45-60. https://doi.org/10.4236/jfrm.2021.121005
Liu, Y., Luo, J. y Zhou, Z. (2023). Decision support systems integrated with AI: New trends and challenges. Journal of Industrial Engineering and Management, 19(2), 34-56. https://doi.org/10.1016/j.jiem.2023.06.015
Mendez, A., Calvo, L., Jimenez, E., Alfaro, J., Campana, S. y Diaz, A. (2023). Platform for the recognition of people and their emotions for SMEs and Startups. Iberian Conference on Information Systems and Technologies. https://doi.org/10.23919/CISTI58278.2023.10211990 DOI: https://doi.org/10.23919/CISTI58278.2023.10211990
Ojha, N., Pandita, A. y Vaish, A. (2024). Cyber-security challenges for artificial intelligence-empowered electric vehicles—analysis and current status. Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems: Fundamentals, Technologies, and Solutions, 317-346. https://doi.org/10.1016/B978-0-443-23814-7.00012-2 DOI: https://doi.org/10.1016/B978-0-443-23814-7.00012-2
Parkar, E., Gite, S., Mishra, S., Pradhan, B. y Alamri, A. (2024). Comparative study of deep learning explainability and causal ai for fraud detection. International Journal on Smart Sensing and Intelligent Systems. https://doi.org/10.2478/ijssis-2024-0023 DOI: https://doi.org/10.2478/ijssis-2024-0023
Power, D. J. (2020). Decision support systems: Concepts and resources for managers. Greenwood Publishing Group. https://doi.org/10.1017/dss2020
Qureshi, N., Choudhuri, S., Nagamani, Y., Varma, R. y Shah, R. (2024). Ethical Considerations of AI in Financial Services: Privacy, Bias, and Algorithmic Transparency. 2024 International Conference on Knowledge Engineering and Communication Systems. https://doi.org/10.1109/ICKECS61492.2024.10616483 DOI: https://doi.org/10.1109/ICKECS61492.2024.10616483
Sarin, S., Singh, S., Kumar, S., Goyal, S., Gupta, B., Alhalabi, W. y Arya, V. (2024). Unleashing the Power of Multi-Agent Reinforcement Learning for Algorithmic Trading in the Digital Financial Frontier and Enterprise Information Systems. Computers, Materials and Continua, 3123-3138. https://doi.org/10.32604/cmc.2024.051599 DOI: https://doi.org/10.32604/cmc.2024.051599
Sharda, R., Delen, D. y Turban, E. (2021). Business intelligence, analytics, and decision support. Pearson Education. https://doi.org/10.1080/doi.book.biadss
Sharma, P. (2023). AI-based financial forecasting in emerging economies: A comparative study between India and China. Asian Business Review, 29(5), 151-170. https://doi.org/10.1056/asian_business_forecast2023
Shu, C., Chen, Y., Tan, C., Luo, Y. y Dou, H. (2024). Enhancing trust transfer in supply chain finance: a blockchain-based transitive trust model. Journal of Cloud Computing. https://doi.org/10.1186/s13677-023-00557-w DOI: https://doi.org/10.1186/s13677-023-00557-w
Suhel, S., Shukla, V., Vyas, S. y Mishra, V. (2020). Conversation to Automation in Banking through Chatbot Using Artificial Machine Intelligence Language. ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization, 611-618. https://doi.org/10.1109/ICRITO48877.2020.9197825 DOI: https://doi.org/10.1109/ICRITO48877.2020.9197825
Talin, B. (2023). La inteligencia artificial en la toma de decisiones empresariales. MoreThanDigital Insights. https://acortar.link/EdlRGe
Tsai, p., Wang, W., Chang, J., Chen, Z. y Zhang, Y. (2017). Utilizing IABC and time series model in investigating the influence of adding monitoring indicator for foreign exchange rate forecasting. Advances in Intelligent Systems and Computing, 183-191. https://doi.org/10.1007/978-3-319-48490-7_22 DOI: https://doi.org/10.1007/978-3-319-48490-7_22
Tsai, P., Yang, L., Zhang, J., Zhang, Y., Chang, J. y Istanda, V. (2017). Composing high event impact resistible model by interactive artificial bee colony for the foreign exchange rate forecasting. Advances in Intelligent Systems and Computing, 760-770. https://doi.org/10.1007/978-3-319-48308-5_73 DOI: https://doi.org/10.1007/978-3-319-48308-5_73
Tsai, P., Zhang, J., He, Y., Chang, J., Yang, L. y Yang , W. (2017). IABC robotic evolutionary model for the foreign exchange rate prediction in Central America trading agreement events. 2016 IEEE Symposium Series on Computational Intelligence. https://doi.org/10.1109/SSCI.2016.7850246 DOI: https://doi.org/10.1109/SSCI.2016.7850246
Van Eck, N. J. y Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538.
https://doi.org/10.1007/s11192-009-0146-3 DOI: https://doi.org/10.1007/s11192-009-0146-3
Wang, S., Asif, M., Shahzad, M. y Ashfaq, M. (2024). Data privacy and cybersecurity challenges in the digital transformation of the banking sector. Computers and Security. https://doi.org/10.1016/j.cose.2024.104051 DOI: https://doi.org/10.1016/j.cose.2024.104051
Zapata Cortés, J. A. (2020). Inteligencia artificial para la toma de decisiones. Revista Perspectiva Empresarial, 7(2-1), 3-5. Fundación Universitaria CEIPA. https://www.redalyc.org/pdf/6722/672271538001.pdf DOI: https://doi.org/10.16967/23898186.663
Zhu, J. y Liu, W. (2020). A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics, 123(1), 321-335.
https://doi.org/10.1007/s11192-020-03387-8 DOI: https://doi.org/10.1007/s11192-020-03387-8
Zhu, J. y Liu, W. (2022). Machine learning applications in financial decision-making: A comprehensive review. Journal of Computational Finance, 19(2), 87-103. https://doi.org/10.1016/j.jcf.2022.05.011 DOI: https://doi.org/10.1016/j.jcf.2022.05.011
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Oscar Mauricio Bedoya Sánchez, Sandra Milena Pérez García, Heidy Lorena Osorio Oviedo, Juan Felipe Guzmán Pacheco

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).