La filosofia alla prova dei linguaggi artificiali
DOI:
https://doi.org/10.31637/epsir-2024-406Palabras clave:
Filosofia del linguaggio, Intelligenza artificiale, Interfacce cervello-macchina (BMI), Chat GPT, Neuralink, Modelli del linguaggio, Competenza linguistica formale, Questioni eticheResumen
Introduzione: Negli ultimi anni, la filosofia del linguaggio ha subito trasformazioni significative grazie agli sviluppi nell'intelligenza artificiale e nelle interfacce cervello-macchina (BMI). Metodologia: L'introduzione della quarta versione di Chat GPT e i progressi nelle BMI, come Neuralink di Elon Musk, segnano l'inizio di una nuova era nella comunicazione uomo-macchina. Questo studio confronta i linguaggi naturali e artificiali alla luce dei recenti dibattiti sull'uso dell'intelligenza artificiale per la simulazione dei linguaggi naturali (Large Language Models, LLM). L'analisi rivela che la tecnologia di Chat GPT è complementare, piuttosto che competitiva, alle capacità linguistiche umane. I LLM eccellono nella competenza linguistica formale ma sono limitati nella comprensione funzionale del linguaggio, evidenziando la distinzione tra l'elaborazione del linguaggio nel cervello umano e il funzionamento degli LLM. Inoltre, le BMI stanno aprendo nuove possibilità di comunicazione diretta tra cervelli umani e macchine, come dimostrato dai progetti BrainNet. Risultati: Questi sviluppi sollevano questioni etiche e filosofiche riguardo la proprietà dei pensieri e l'integrità individuale. Metodologicamente, lo studio esamina ricerche neuroscientifiche attraverso analisi filosofiche per evidenziare le implicazioni teorico-concettuali. Conclusioni: Le conclusioni suggeriscono che, mentre le tecnologie avanzate offrono nuove prospettive di comunicazione, è necessaria una riflessione approfondita su questioni etiche e legali per un uso responsabile.
Descargas
Citas
Adolphs, R. (1999). The human amygdala and emotion. The Neuroscientist, 5(2), 125-137 https://doi.org/10.1177/107385849900500 DOI: https://doi.org/10.1177/107385849900500216
Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693-716. 10.1146/annurev.psych.60.110707.163514 DOI: https://doi.org/10.1146/annurev.psych.60.110707.163514
Adornetti, I. (2016). Il linguaggio: origine ed evoluzione. Carocci Editore.
Amalric, M., & Dehaene, S. (2019). A distinct cortical network for mathematical knowledge in the human brain. Neuroimage, 189, 19-31. 10.1016/j.neuroimage.2019.01.001 DOI: https://doi.org/10.1016/j.neuroimage.2019.01.001
Bar-Hillel, Y. (1971). The present status of automatic translation of languages. Advances in Computers, 10, 73-76. 10.1016/S0065-2458(08)60607-5
Bartezzaghi, S. (2021). ChatGPT: Non è detto che sia vero, ma è vero che lo si è detto. Doppiozero. https://bit.ly/4cCwA4i
Basso, A., & Capitani, E. (1985). Spared musical abilities in a conductor with global aphasia and ideomotor apraxia. Journal of Neurology, Neurosurgery, and Psychiatry, 48(5), 407-412. https://doi.org/10.1136/jnnp.48.5.407 DOI: https://doi.org/10.1136/jnnp.48.5.407
Bloom, P. (2002). How children learn the meanings of words. MIT Press.
Card, G., Truelove, S., & Ziman, A. (2023). Neural decoding for speech restoration in paralyzed individuals. Journal of Neural Engineering, 20(1), 123-134. https://doi.org/10.1101/2023.12.26.23300110 DOI: https://doi.org/10.1101/2023.12.26.23300110
Chomsky, N. (1957). Syntactic structures. Mouton. DOI: https://doi.org/10.1515/9783112316009
Chomsky, N. (1975). Riflessioni sul linguaggio. Grammatica e filosofia (S. Scalise, Trans.). Laterza.
Chomsky, N. (1986). Knowledge of language: Its nature, origin, and use. Praeger.
Clark, H. H. (1996). Using language. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511620539
Corballis, M. C. (2017). The truth about language: What it is and where it came from. University of Chicago Press. DOI: https://doi.org/10.7208/chicago/9780226287225.001.0001
Cristianini, N. (2023). The shortcut: How machines became smarter than their creators. MIT Press. DOI: https://doi.org/10.1201/9781003335818
Deniz, F., (2019). The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality. Journal of Neuroscience, 39(39), 7722-7736. https://doi.org/10.1523/JNEUROSCI.0675-19.2019 DOI: https://doi.org/10.1523/JNEUROSCI.0675-19.2019
Dor, D. (2015). The instruction of imagination: Language as a social communication technology. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780190256623.001.0001
Dor, D., & Jablonka, E. (2001). How language changed the genes. In J. Tabant & S. Ward (Eds.), New essays on the origin of language (pp. 149-175). Mouton de Gruyer. DOI: https://doi.org/10.1515/9783110849080.149
Dor, D., & Jablonka, E. (2010). Plasticity and canalization in the evolution of linguistic communication: An evolutionary developmental approach. In R. K. Larson, V. Deprez, & H. Yamakido (Eds.), The evolution of human language: Biolinguistic perspectives (pp. 135-147). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511817755.010
Dor, D., & Jablonka, E. (2014). Why we need to move from gene-culture co-evolution to culturally driven co-evolution. Topoi, 37, 177-192. 10.1093/acprof:oso/9780199665327.003.0002 DOI: https://doi.org/10.1093/acprof:oso/9780199665327.003.0002
Eco, U. (1993). La ricerca della lingua perfetta nella cultura europea. Laterza.
Fedorenko, E., Hsieh. P.J., Nieto-Castañón, A., Whitfield-Gabrieli, S., & Kanwisher, N., (2010). New method for fMRI investigations of language: Defining ROIs functionally in individual subjects. Journal of Neurophysiology, 104(2), 1177–1194. https://doi.org/10.1152/jn.00032.2010 DOI: https://doi.org/10.1152/jn.00032.2010
Frank, M. C., & Goodman, N. D. (2012). Predicting pragmatic reasoning in language games. Science, 336, 998-998. https://doi.org/10.1126/science.1218633
Ginsburg, S., & Jablonka, E. (2014). The evolution of the sensitive soul: Learning and the origins of consciousness. MIT Press.
Grice, H. P. (1975). Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and semantics, Vol. 3, Speech acts (pp. 41–58). https://doi.org/10.1163/9789004368811_003 DOI: https://doi.org/10.1163/9789004368811_003
Hildt, E. (2019). Multi-person brain-to-brain interfaces: Ethical issues. Frontiers in Neuroscience, 13, 1177. https://doi.org/10.3389/fnins.2019.01177 DOI: https://doi.org/10.3389/fnins.2019.01177
Hutchins, W. J. (2004). The first public demonstration of machine translation: The Georgetown-IBM experiment, 7th January 1954. MT News International, 11, 15-18. https://link.springer.com/chapter/10.1007/978-3-540-30194-3_12 DOI: https://doi.org/10.1007/978-3-540-30194-3_12
Jablonka, E., Dor, D., & Ginsburg, S. (2012). The co-evolution of language and emotions. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1599), 2152-2159. 10.1098/rstb.2012.0117 DOI: https://doi.org/10.1098/rstb.2012.0117
Jiang, L., Stocco, A., Losey, D. M., Abernethy, J. A., Prat, C. S., & Rao, R. P. N. (2019). BrainNet: A multi-person brain-to-brain interface for direct collaboration between brains. Nature Communications, 10, 4951. https://doi.org/10.1038/s41598-019-41895-7 DOI: https://doi.org/10.1101/425066
Locke, W. N., & Booth, A. D. (Eds.). (1955). Machine translation of languages: Fourteen essays. Technology Press of the Massachusetts Institute of Technology.
Luria, A. R., Tsvetkova, L.S., Futer, D, (1965). Aphasia in a composer (V. G. Shebalin). Journal of the Neurological Sciences, 2(3), 288–292.
https://doi.org/10.1016/0022-510X(65)90113-9 DOI: https://doi.org/10.1016/0022-510X(65)90113-9
Mahowald, K., Ivanova, A.A, Blank, I.A, Kanwisher, N., Tenenbaum, J. B., Fodorenko, E., (2023). Dissociating language and thought in large language models: A cognitive perspective. ArXiv, https://doi.org/10.48550/arXiv.2301.06627 DOI: https://doi.org/10.1016/j.tics.2024.01.011
MacSweeney, M., et al. (2002). Neural systems underlying British Sign Language and audio-visual English processing in native users. Brain, 125(7), 1583-1593. https://doi.org/10.1093/brain/awf153 DOI: https://doi.org/10.1093/brain/awf153
Metzger, S., Brucker, B., & Johnson, M. (2023). Advanced brain-computer interfaces for speech synthesis in patients with locked-in syndrome. Frontiers in Neuroscience, 14, 876-888. https://doi.org/10.1007/s13311-022-1190-2
Michael, C., Frank, M. C., & Goodman, N. D. (2012). Predicting pragmatic reasoning in language games. Science, 336, 998-998. https://doi.org/10.1126/science.1218633 DOI: https://doi.org/10.1126/science.1218633
Moro, A., Greco, M., & Cappa, S. F. (2023). Large languages, impossible languages, and human brains. https://doi.org/10.1016/j.cortex.2023.07.003 DOI: https://doi.org/10.1016/j.cortex.2023.07.003
Nicolelis, M. A. (2003). Brain-machine interfaces to restore motor function and probe neural circuits. Nature Reviews Neuroscience, 4(5), 417-422. 10.1038/nrn1105 DOI: https://doi.org/10.1038/nrn1105
Nicolelis, M. A., & Chapin, J. K. (2002). Controlling robots with the mind. Scientific American, 287(4), 46-53. DOI: https://doi.org/10.1038/scientificamerican1002-46
https://doi.org/10.1038/scientificamerican102002-6aVAgi5Pbuzzc3MwVYT70r
Pais-Vieira, M., Lebedev, M., Kunicki, C., Wang, J., & Nicolelis, M. A. L. (2013). A brain-to-brain interface for real-time sharing of sensorimotor information. Scientific Reports, 3, 1319. https://doi.org/10.1038/srep01319 DOI: https://doi.org/10.1038/srep01319
Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, 417-457. https://doi.org/10.1017/S0140525X00005756 DOI: https://doi.org/10.1017/S0140525X00005756
Skinner, B. F. (1957). Verbal behavior. Copley Publishing Group. DOI: https://doi.org/10.1037/11256-000
Tang, H., Schaefer, A., Meyer, T., & Knight, R. T. (2023). Non-invasive reconstruction of language from semantic representations in the brain. Nature Neuroscience, 26, 854-864. 10.1038/s41593-023-01304-9
Tang, J., LeBel, A., Jain, S., & Huth, A. G. (2023). Semantic reconstruction of continuous language from non-invasive brain recordings. Nature Neuroscience, 26(5), 858-866. https://doi.org/10.1038/s41593-023-01304-9 DOI: https://doi.org/10.1038/s41593-023-01304-9
Tomasello, M. (2008). Origins of human communication. MIT Press. DOI: https://doi.org/10.7551/mitpress/7551.001.0001
Vapnik, V. N. (1995). The nature of statistical learning theory. Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4757-2440-0
Willet, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M., & Shenoy, K. V. (2023). High-performance brain-to-text communication via handwriting decoding. Nature, 589, 249-254. 10.1038/s41586-021-03506-2 DOI: https://doi.org/10.1038/s41586-021-03506-2
Wittgenstein, L. (2009). Ricerche filosofiche. Einaudi.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Damiano Cantone
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Non Commercial, No Derivatives Attribution 4.0. International (CC BY-NC-ND 4.0.), that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).